

A Human Steering Model Used to Control
Vehicle Dynamics Models

by Richard J. Pearson and Peter J. Fazio

ARL-TR-3102 December 2003

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or
approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TR-3102 December 2003

A Human Steering Model Used to Control
Vehicle Dynamics Models

Richard J. Pearson and Peter J. Fazio
Weapons and Materials Research Directorate, ARL

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

 December 2003
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

 October 2001 to September 2002
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

A Human Steering Model Used to Control Vehicle Dynamics Models

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

 AH80

5e. TASK NUMBER

6. AUTHOR(S)

 Richard J. Pearson and Peter J. Fazio (both of ARL)

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
Weapons and Materials Research Directorate
Aberdeen Proving Ground, MD 21005-5066

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-3102

10. SPONSOR/MONITOR'S ACRONYM(S) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report documents the modification of a legacy human steering model with the addition of a new three-dimensional driving
sensor model. The three-dimensional sensor model was developed to replace the two-dimensional sensor model in the original
code. The report also covers the integration of the resulting modified human steering model with a vehicle dynamics model
developed in commercial off-the-shelf (COTS) simulation software. The COTS software is called the Dynamic Analysis and
Design System (DADS). In this study, the legacy model was adapted to interface with the current version of DADS. The
modified human steering model was interfaced with a model of the high mobility multipurpose wheeled vehicle (HMMWV) in
DADS. Experimental data exist for driving tests that use the HMMWV. These data were used to validate the integrated human
steering model.

15. SUBJECT TERMS

 control; DADS; human steering model; vehicle dynamics

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON

 Richard J. Pearson
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified

17. LIMITATION
OF ABSTRACT

UL

18. NUMBER
OF PAGES

95

19b. TELEPHONE NUMBER (Include area code)

 410-278-6676
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

1. Introduction 1
1.1 Legacy Human Steering Model 1
1.2 Software Architecture 1

2. Human Steering Simulation 2
2.1 The Steering Control Loop 2
2.2 Derivation of the Steering Algorithm 3

3. Three-Dimensional Driving Sensor Model 9
3.1 Definition of Three-Dimensional Obstacles 10
3.2 Creating a Range Map of the Virtual Environment 12

4. Obstacle Avoidance and the Previewed Path 17

5. Interfacing the Human Steering and Vehicle Dynamics Models 18
5.1 Steering Commands and Steering Motor Torque Control 19
5.2 Vehicle Speed and Drive Torque Control 21
5.3 Vehicle State and Data Parameters 21

6. Vehicle Dynamics Model 23
6.1 High Mobility Multipurpose Wheeled Vehicle (HMMWV) Model 23
6.2 Steering Control Modifications 24
6.3 Control Elements for Vehicle State Sensing and Commanded Actuation 24

7. Validation of HMMWV Results 25

8. Conclusions 28

9. References 29

Appendix A. Code Makefile 31

Distribution List 83

iv

List of Figures

Figure 1. Steering model process flow. ..2
Figure 2. Control algorithm block diagram. ...3
Figure 3. Process flow to define virtual environment...11
Figure 4. Process flow for range mapping. ...13
Figure 5. HMMWV in slalom track..26
Figure 6. HMMWV maneuvering through the slalom course. ...26
Figure 7. Planned and actual vehicle path through slalom course. ...27
Figure 8. Comparison of steering models and experimental results...28

1

1. Introduction

1.1 Legacy Human Steering Model

Human steering models have been used by the automotive industry as part of their vehicle
dynamics modeling efforts. The U.S. Army Tank Automotive Command contracted with the
University of Michigan Transportation Research Institute to modify one of the industrial models
to work with military vehicles. The steering model was modified to work with wheeled and
tracked military vehicles. We could model conventional front wheel steering, front and rear
wheel steering, and skid steering by changing input parameters in the model. At the conclusion
of the contract, a report entitled “Development of Driver/Vehicle Steering Interaction Models for
Dynamic Analysis” (1) was written about the new human steering model. The existing or
“legacy” human steering model that served as the basis for the current study was taken from
reference (1).

1.2 Software Architecture

This study added a new sensor model to the steering model and linked the modified steering
model to a vehicle dynamics simulation in the dynamics analysis and design system (DADS1).
The original steering model contained a simple two-dimensional (2-D) sensor model that did not
take into account the pitch and yaw of the vehicle or height of objects in the virtual environment.
The new sensor model is three-dimensional (3-D) and completely coupled to the vehicle
dynamics model. Figure 1 shows the basic process flow of the new integrated model. The
external vehicle dynamics model was developed within DADS as a complex multi-body
simulation. The desired path is input as a series of 3-D obstacles that border the route, similar to
concrete “Jersey” barriers. The sensor model measures the distance from the vehicle to the
surrounding obstacles. Based on the range map developed by the sensor, the steering model
plans or previews a path for the vehicle. The steering model tries to maintain the vehicle
equidistant from obstacles to the right and left. The steering model contains a simplified internal
model of the vehicle’s dynamics. The internal model is a linearized, 2-D model. The internal
model represents the human driver’s perception of how the vehicle behaves and is used to predict
the vehicle’s state at some time in the future. The steering model takes as input the current state
of the vehicle, previewed path, and the predicted vehicle state during a preview interval. The
steering model determines the difference between the previewed and the predicted path of the
vehicle during the preview interval called the “path error”. The steering model calculates a
steering command that minimizes the “path error”. The steering command is passed to the
external vehicle model and produces control forces that change the vehicle’s state.

1DADS is a trademark of LMS (not an acronym).

2

Figure 1. Steering model process flow.

A complete listing of the modified human steering model and its interface to DADS is given in
appendix A. The control portion of the human steering model has not been significantly
modified except for comments in the code. The comments have been modified to bring them in
line with the derivation of the control algorithm given in this report. The subroutines taken
directly from the reference (1) are Avoid_Obstacles, CALCRS, CALCTH, CHECKRTH,
GMPRD, NEWDRIVER, and TRANS. The other subroutines are either new or are major
revisions of subroutines presented in reference (1).

2. Human Steering Simulation

2.1 The Steering Control Loop

Figure 2 shows a block diagram of the control algorithm used in the steering subroutines
“NEWDRIVER”. The parameters used in the steering algorithm are initialized by
“HUMAN_STEERING” which then calls “NEWDRIVER”. The algorithm in “NEWDRIVER”
calculates a steering control signal over a time interval called the preview time. The control
signal is calculated to minimize the difference or error between the planned or previewed path
and the vehicle’s actual path. The steering control signal is delayed by a fix amount of time
before it is sent to the external vehicle dynamics model. The fixed delay represents the human
driver’s neuromuscular delay in generating the command signal, i.e., turning the steering wheel.

3

Figure 2. Control algorithm block diagram.

The course through the algorithm starts at the left with the previewed vehicle’s path information
received from the vehicle’s sensors. The previewed path is subtracted from the path predicted by
the driver. The difference is the error to be minimized by the control algorithm. The error is
acted upon by the gain to produce a revised steering signal. The revision is summed with the
current steering signal. The new steering signal is delayed by the neuromuscular delay to
become the current steering signal. The current steering signal is sent to the external vehicle
dynamics model where it produces control forces. The external vehicle dynamics model
calculates the effects of the control forces on the vehicle state. The current steering signal is also
sent backward to be summed with the steering signal update. The current steering signal is used
by the driver to predict the vehicle path during the preview interval. The current vehicle state is
used in a separate calculation by the driver to predict the vehicle’s path during the preview
interval. These two predictions of the path are summed to produce the current predicted path
during the preview interval. The current predicted path is fed back and summed with the current
previewed path. Finally, the vehicle state is sent to the sensor model where it is used to revise
the current previewed path information.

2.2 Derivation of the Steering Algorithm

Reference (1) gives a derivation of the steering algorithm, but the listing of the code in appendix
A shows a somewhat different algorithm. The algorithm that was actually used to calculate the

4

steering signal is derived in this report. In the derivation of the control algorithm, the system is
assumed to be linear. The equation motion of the vehicle is

xmy

gxx
T

u
=

+= F&
 (1)

in which

 x is the vehicle state vector,

 x& is the vector containing the time derivative of the vehicle state,

 g is the control coefficient vector,

 u is the scalar steering command, and

 F is the 4 by 4 system matrix.

Note: Parameters in italics are vectors, parameters in bold and italics are matrices, and
parameters written in New Gothic MT font are scalars.

The vehicle’s state vector x and the fundamental matrix F are given by the following:

ψ

=
r
v
y

x (2)

 () ()
() ()

−−
−−+−

=

0100
0IUCbCa2IUaCbC20
0UmUaCbC2mUCC20
U010

arafaraf

arafaraf
22F (3)

In equations 2 and 3, the parameters are defined as follows:

Y = vehicle’s lateral displacement

v = vehicle’s lateral velocity

ψ = vehicle’s yaw angle

r = vehicle’s yaw rate

U = vehicle’s forward velocity (assumed to be constant)

m = vehicle’s mass

I = vehicle’s moment of inertia about the vertical axis

a = distance from the vehicle’s center of gravity (cg) to the front axle centerline

b = distance from the vehicle’s cg to the rear axle centerline

5

Caf = front tire cornering stiffness

Car = the rear tire cornering stiffness

ff = the front wheel steering angle

fr = the rear wheel steering angle

k = the proportion of ff

The vehicle’s dynamic transition vector g is given by the following:

 ()[]
()[]

++
++

=

0
IDIkbCC2C
mBmkCC2A

0

afaf

afafg (4)

In equation 4, the A, B, C, and D parameters are used to model different types of steering (1).
When A and C are set to 1.0 and B, D, and k are set to 0.0, the standard front-wheel-only
steering is modeled. If front and rear steering is modeled, A, B, C, and D remain the same but k
assumes some value between 0 and 1. In reference (1), tests were conducted with k = 0.75.
When A, B, and C are set to 0.0 and D is set to 1.0, skid steering is modeled. In the modeling of
a tracked vehicle, Caf and Car are interpreted as an equivalent lateral force generated by track
elements because of side slip.

The first part of equation 1, the equations of motion, can be put in the following form:

 ()thxx +⋅= A& (5)

with the initial condition given by the following:

 () 0xx =0 (6)

in which x0 is some known initial position.

In equation 5,

 ()tu⋅=
=

gh(t)
FA

The fundamental matrix φ is defined sothat (2)

 () I
A
=
⋅=

0φ
φφ& (7)

Laplace transforms will be used to solve equation 7 for φ . Taking the Laplace transform of each
side of equation 7 yields the following (3):

 []φφ
.

⋅=

 All (8)

6

When the initial condition from equation 7 is used in equation 8, it can be rewritten as follows:

 [] () [] []φφφφ lll ⋅=−=− AIs0s (9)

in which s is some positive real number.

Solving equation 9 for φ and substituting for A, we get the following:

 ()[] ()[]1111 −−−− −−=−−= IFIA ss llφ (10)

In equation 10, 1−l is the inverse Laplace transform.

Returning to equation 5 and taking the Laplace transform of both sides gives the following:

 [] ()[]
() ()sxss

t
HxX

hxx
+⋅=−

+⋅=

00 A
Al&l (11)

in which H is the Laplace transform of h

Solving equation 11 for ()sX gives the following:

 () ()[] ()[] ()ssss HxX ⋅−−+⋅−−= −− 1
0

1 IAIA (12)

Taking the inverse Laplace transform of each side of equation 12 and solving for X gives the
following:

()[] ()[] ()[] (){ }

() ()[]{ } ()[] (){ }ssst

ssss

Hxx

Hx

0 ⋅−−+⋅−−=

⋅−−+⋅−−=
−−−−

−−−−

1111

1
0

111

IAIA

IAIAX

ll

ll
 (13)

With equation 10, the first left-hand term can be rewritten as follows:

 (){ } 00 xx ⋅=⋅−− −− φ11 IA sl (14)

With the convolution theorem and equation 10, the second term of equation 13 can be written as

 ()[]{ } () ()∫ ⋅−=⋅−− −−
t

dtts
0

11 ξξ hH φIAl (15)

Using equations 14 and 15 in equation 13 and using the definition of h gives

 () () () () ()∫∫ ξξ⋅⋅ξ−+⋅=ξξ⋅ξ−+⋅=
tt

dutdtt
0

00
0

00 gxhxx φφφφ (16)

Solving for the vehicle’s lateral displacement y gives the following:

 () () ()

⋅⋅−+⋅⋅=⋅= ∫

t
TT dutt

0
0 ξξξ gxmxmy φφ (17)

7

In equation 17, Tm is the constant observer vector

 []0001=Tm

The error J, between the previewed vehicle path ()ηf and the predicted vehicle path can be
written as follows(1)

 () () (){ }∫ ηη−η
−

=
pt

tp
d

tt
0

2

0

1 yfJ (18)

The minimum path error with respect to the steering control u satisfies

 () () ()[] 01

0

2

0
=

−
−

= ∫
pt

tp
d

ttdu
d

du
d ηηη yfJ (19)

Using equation 17 to substitute for ()ηy in equation 19,

 () () () () 01

0

2

0
0

0
=

⋅⋅−+⋅⋅−

−
= ∫ ∫

pt

t

t
T

p
ddut

ttdu
d

du
d ηξξξη gxmfJ φφ (20)

Differentiating equation 20,

 () () () () () 02

0 00
0

0
=

⋅⋅−⋅−

⋅⋅−+⋅⋅−

−
= ∫ ∫∫

pt

t

t
T

t
T

p
ddtdut

ttdu
d ηξξξξξη gmgxmfJ φφφ (21)

We expanded equation 21 by substituting () ()ξξ uuu ∆+= 0 , in which 0u is the starting steering
control parameter and ()ξu∆ is the change over the preview interval:

() () () ()[] ()

()() () ()

() ()[] () ()

()() () 0

0

2

0

00

00
0

000

0

0

=

⋅⋅−⋅−∆+

⋅⋅−⋅−

⋅⋅−⋅−+⋅−⋅−+=

=

⋅⋅−⋅−

⋅⋅−⋅−∆++

⋅⋅−⋅−⋅⋅−⋅−+

⋅⋅−⋅−+

⋅⋅−⋅−=

∫

∫ ∫∫

∫∫

∫∫ ∫∫

ηξξξ

ξξξξξφη

ηξξξξξ

ξξξφξξξξη

ddtu

dtdttf
du
dJ

ddtdtuu

dttdtdtf
du
dJ

t
T

t

t

t
T

t
TT

t
T

t
T

t
T

t

t

T
t

T
t

T

p

p

gm

gmgmuxm

gmgm

gmxmgmgm

00

0

φ

φφ

φφ

φφφ

(22)

Solving equation 22 for ()ξu ,

8

 ()
() (){ } ()

()∫ ∫

∫ ∫

⋅−⋅

⋅⋅−⋅−⋅−

=∆
p

p

t

t

t
T

t

t

t

p
TT

ddt

ddtt

0

0

2

0

0
0

ηξξ

ηξξξη

ξ

gm

gmxmf

u

φ

φφ

 (23)

Equation 23 gives the basic algorithm for determining the change in steering command that
minimizes the error between the desired vehicle lateral displacement at the end of the preview
time interval and the predicted lateral displacement. The equations are written in terms of the
fundamental matrix φ. Therefore, the next section will be developed in the way φ is calculated.

Expanding the fundamental matrix φ gives the following:

=

44

34

24

14

43

33

23

13

24

23

22

21

41

31

21

11

x
x
x
x

x
x
x
x

x
x
x
x

x
x
x
x

φ (24)

 []43210

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

eeee=

=φ (25)

Equation 25 is the initial condition for equation 24. Each column in equation 24 is an
independent solution of the homogeneous part of equation 5, given below as equation 26.

 xxx ⋅=⋅= FA& (26)

Each of the four independent solutions represented by the columns in equation 24 can be written
as follows:

4443432421414

4343332321313

4243232221212

4143132121111

xFxFxFxFx
xFxFxFxFx
xFxFxFxFx
xFxFxFxFx

+++=
+++=
+++=

+++=

&

&

&

&

 (27)

With the definition of the matrix F given in equation 3, equation 27 can be rewritten as follows:

()[] ()[]

()[] ()[]
34

3
22

23

322

421

22

22

xx
xIUCbCaxIUaCbCx

xUmUaCbCxmUCCx
xuxx

arafafar

afararaf

=
−−+−=

−−++−=
⋅+=

&

&

&

&

 (28)

9

A numerical integration of equation 28 is performed four times to produce the four independent
solution vectors that comprise the columns of equation 24. With equation 25, the first numerical
integration initializes (x1, x2, x3, x4) to e1; the second initializes (x1, x2, x3, x4) to e1; the third
initializes (x1, x2, x3, x4) to e3; and the fourth initializes (x1, x2, x3, x4) to e4.

The time integral of the fundamental matrix in the denominator of equation 23 is also calculated
with a numerical integration. Once the fundamental matrix and its time integral have been found
by numerical integration, the matrix multiplications shown in equation 23 are performed. The
numerator and denominator of equation 23 are formed and the division is performed. The results
of equation 23 give the change in the steering command, and this is added to the previous
steering command to give the steering command that minimizes the path error.

The elements of the F matrix given in equation 3 are calculated in subroutine “TRANS”. The
elements of the g vector are also calculated in “TRANS”. “TRANS” also calculates the elements
of the fundamental matrix φ using equation 26 and a numerical integration. The calculation is
performed four timesone time for each of the initial conditions given in equation 25. The time
integration of the fundamental matrix

∫ ξ
τ

0

φ ξd

is also performed in “TRANS”. The calculation of the fundamental matrix and its integral is
performed over a set number of time intervals, and the result of each calculation is stored in an
array. The array containing the stored fundamental matrices and their integrals is passed back to
subroutine “NEWDRIVER”.

The calculation of the change in steering command given in equation 23 is performed in
subroutine “NEWDRIVER”. We perform the matrix multiplication in equation 23 by calling
subroutine “GMPRD”. The integrations shown in the numerator and denominator are again done
numerically. Finally, dividing the numerator by the denominator produces the change in steering
command, which is added to the previous steering command to produce the current steering
command. The steering command is passed back to subroutine “HUMAN_STEERING” which
in turn passes the command back to “Interface_Steering”. “Interface_Steering” passes the
command onto the vehicle dynamics in the DADS model.

3. Three-Dimensional Driving Sensor Model

The 3-D driving sensor model provides information about the virtual environment to the steering
model. The sensor model is attached to the vehicle dynamics model. The position and
orientation of the vehicle determine the position and orientation of the sensor within the
environment. The sensor does not change position or orientation relative to the vehicle, although

10

the code could be easily extended to model that type of sensor head motion. The sensor model
produces a range map of the environment that is the basis of the planned or previewed path for
the vehicle.

3.1 Definition of Three-Dimensional Obstacles

The environment for the driver model consists of 3-D objects. The objects are defined by a set
of corner points and surfaces. Subsets of the corner points are used to identify the outer surfaces
of the objects. Each type of 3-D object is defined only once but can appear in the environment
any number of times. A unique location and orientation define each instance of the object type
in the environment. The sensor model measures the distance from the sensor center to the
surfaces of the 3-D objects in the environment. The range is measured along a series of scan
rays. The distance to the closest object along this set of scan rays forms the range map of the
environment.

The scan rays are generated on the basis of information read (scanned) by subroutine
“HUMAN_DRIVER”. The subroutine reads the maximum range at which the sensor can detect
obstacles. The scanning pattern of the sensor is defined in terms of horizontal and vertical scan
parameters. The scan angles are defined in terms of spherical coordinates centered on the sensor.
Phi (φ) is the horizontal scan angle measured counterclockwise from the vehicle’s X-axis. Theta
(θ) is the vertical scan angle measured downward from the vehicle’s Z-axis. “HUMAN_DRIVER”
reads the maximum scan angle to the left and right of the X-axis and the maximum scan angle
above and below the horizontal from a user-supplied input file. “HUMAN_DRIVER” also reads
Delta_Theta and Delta_Phi which define the angular steps between scan rays. The scan pattern
parameters are passed to “Interface_Steering” which, in turn, passes them to “Get_Obstacles”.

The 3-D objects are initialized in subroutine “Get_Obstacles”. Figures 3 and 4 show the process
flow for defining the 3-D objects and placing them in the virtual environment surrounding the
vehicle. The information is read only once, the first time the subroutine is called. The number
of object types is read first. For each object type, the number of corner points is read. For each
corner point in an object type, an X,Y,Z location is entered. The first set of corners is assumed
to be part of a polygon in the Z = 0 plane. The corners are entered counterclockwise around the
polygon, with as many as eight points describing the polygon. The second set of corner points
forms a second polygon displaced in the negative Z direction. The corner points of the second
polygon are again entered in a counterclockwise direction in a plane with a constant negative Z
value.

11

Figure 3. Process flow to define virtual environment.

12

Once the corner points have been read, the center of mass (CM) of the points is calculated. For
the CM calculation, all the points are assigned a mass of one. The locations of the corner points
are then transformed to a coordinate system centered at the CM. The transformed corner point
locations are stored in a 2-D array. The first index in the array identifies the object type and the
second the corner number within the object. The first index becomes the 3-D object
identification number. The distance from the CM to each corner point is calculated and the
largest distance is determined. A “bounding” sphere that encloses the object is then defined with
its center at the CM and its radius equal to the distance from the CM to the farthest corner point.

Once the corner points have been defined, the data defining the surface of the 3-D object type are
read. The number of surfaces in the object is read first. For each surface, the number of corner
points in the surface is read. The surface corner points are a subset of the 3-D object corner
points. The second index in the array of 3-D object corner points is used to identify surface
corner point at the same location. These indices are stored in a 3-D array that defines the
surface. The first index of the surface corner point array identifies the 3-D object, the second
index identifies the surface, and the third identifies that corner within the surface. The second
index becomes the surface ID number within the 3-D object type.

Once all the object types have been defined, the instances of the object types in the environment
are read. First, the number of objects in the environment is read. For each 3-D object, the
location of its CM in the inertial coordinate system is read. The locations of the object’s CM are
stored in a one-dimensional (1-D) array where the index indicates the order in which the
instances of the object in the environment were read.

After the location of the objects CM has been entered, the orientation of the object is read. Next,
the Bryant angles defining the 3-D object’s orientation in the inertial coordinate system are read.
The Bryant angles (ψ, θ, and φ) define a rotation about the X axis, followed by a rotation about
the transformed Y axis and finally, a rotation about the twice-transformed Z axis. In other
words, the object moves first in roll, then pitch, and finally in yaw. The Bryant angles are stored
in 1-D arrays where the indices indicate the order in which the instances of the object in the
environment were read.

Note that Bryant angles θ and φ are distinct from the θ and φ angles used to defined scan rays in
spherical coordinates. Unfortunately, the standard definition for both Bryant angles and spherical
coordinates use the same angle names, resulting in the overlapping definitions in this report.

3.2 Creating a Range Map of the Virtual Environment

Once the virtual environment has been defined in terms of 3-D objects, the sensor model can be
used to create a range map for the steering model. The range map is created in subroutine
“Get_Obstacles”. “Get_Obstacles” is called by DADS every time step. DADS passes the
vehicle position and orientation at the current time step to “Get_Obstacles.” The subroutine
passes back the range to the obstacles surrounding the vehicle along a set of pre-defined scan

13

rays for that time step. The process flow for creating a range map of the virtual environment is
shown in figure 4.

Figure 4. Process flow for range mapping.

14

Figure 4. (continued)

15

Figure 4. (continued)

The 3-D objects defined in the inertial coordinate system are transformed to the vehicle-centered
coordinate system. The first step in this process is to calculate the transformation matrix that
rotates coordinates in the inertial frame into the vehicle coordinate system. The transformation
matrix required is calculated from the set of three Bryant angles defining the current orientation
of the vehicle. Elements of the three by three transformation matrix are calculated by subroutine
“BRYANT_MATRIX” which is called by “Get_Obstacles”.

The transformation matrix, along with information about the 3-D objects, is passed into
subroutine “VEH_COORDS” which is called by “Get_Obstacles”. “VEH_COORDS” first
transforms the CM location of all the 3-D objects to vehicle-centered coordinates. The
coordinate transformation is performed by subroutine “TRANSFORMER,” which is called by
“VEH_COORDS”. “TRANSFORMER” uses the transformation matrix and the current vehicle
position to rotate and displace the CM location inertial coordinates into vehicle coordinates.

16

Once the object CM locations have been transformed to vehicle coordinates, “VEH_COORDS”
checks the range to each object. Each object is checked to see if any part of its bounding sphere,
centered at the CM, is within the maximum sensor range of the vehicle. If part of the bounding
sphere falls within the maximum sensor range, then a check is made to see if any part of the
bounding sphere falls within the angular range of the horizontal scan of the sensor. If some part
of the bounding sphere falls within the horizontal scan range, a final check is made to see if part
also falls within the vertical angular scan range. Those 3-D objects that have at least part of their
bounding sphere within the scan pattern of the sensor are stored in a new array. The array
contains the 3-D object identification number, object type, range to the object, the object location
in vehicle Cartesian coordinates and in vehicle spherical coordinates.

Once “VEH_COORDS” returns to “Get_Obstacles,” that subroutine calls subroutine “SCAN”
and passes the array of objects with bounding spheres within the sensor scan pattern. “Scan”
walks through the set of scan rays, starting from the upper left. The subroutine first marches the
scan rays horizontally left to right in steps of “Delta_Phi”. When a horizontal scan is complete,
the vertical scan angle is decreased by “Delta_Theta” and the next complete horizontal scan is
initiated. The pattern is repeated until the lowest horizontal scan is completed. The range along
all scan rays is initially set to the maximum sensor range. The range is decreased only if, later in
the process, the scan ray is found to intercept an object surface.

For each scan ray, a check is performed against each object within the sensor scan pattern to see
if the ray intersects any part of the bounding sphere. If the scan ray does not intersect the
bounding sphere of an object, then the range along that ray remains set to the maximum sensor
range. If the scan ray intersects the bounding sphere of a 3-D object, then subroutine
“SCAN_SURF” is called to see if it intersects a surface of the object.

“SCAN_SURF” is used to determine if a scan ray intersects any of the external surfaces of a 3-D
object. First, the corner points of the object to be examined are transformed to inertial
coordinates from object-centered coordinates via the subroutine “TRANSFORMER”. The
corner points are then transformed from inertial to vehicle coordinates, again with
“TRANSFORMER”. “SCAN_SURF” then marches through the external surface of the 3-D
object in vehicle coordinates to see if the scan ray passed through one of the surfaces.

The corner points of the surface are transformed into vehicle spherical coordinates. The corner
points with the maximum and minimum horizontal angle, φ, are found. The corner points with
the maximum and minimum vertical angle, θ, are also identified. If the scan ray’s θ and φ values
do not fall between the maximum and minimum for the surface, it missed the surface. If it does
fall with the maximum and minimum, it may strike the surface. For those rays, we perform a
further check by calling subroutine “RAY_INTERSECT”.

Subroutine “RAY_INTERSECT” first calculates the unit surface normal for the surface in
question. “RAY_INTERSECT” then calculates the distance from the sensor to the plane
containing the surface and the distance from the sensor to the plane along the scan ray. It uses

17

this information to calculate the point where the scan ray intersects the plane containing the
surface. Once the intersection of the scan ray and the plane has been identified, it must be
determined if that point lies inside the actual surface.

First, the center of the surface is determined and then, the surface is divided into triangles. Each
triangle has the surface center as one vertex and two surface corner points as the other vertices.
The subroutine then marches through the triangles one at a time, checking to see if the
intersection point lies within it. The algorithm used to check the triangles was taken from
Graphic Gems (4). If the intersection point does not lie in any of the triangles, the scan ray
missed the surface and the range remains set to the maximum sensor range. If the intersection
point is in one of the triangles, then the range is set to the distance from the sensor to the plane,
as calculated before. Subroutine “RAY_INTERSECT” returns the range to subroutine
“SCAN_SURF”.

In “SCAN_SURF,” each surface in the object is checked. If the scan ray intersects more than
one surface, the range to the object is set equal to the shortest range to any of the surfaces in the
object. “SCAN_SURF” returns the range to the object to subroutine “SCAN” where the range
for that scan ray is stored in an array of ranges for all scan rays. The range array is 2-D, with the
first index identifying the vertical scan angle and the second the horizontal scan angle. The
range array, along with the array containing the horizontal scan angle, φ, and the vertical scan
angle, θ, form a range map of the environment around the vehicle in spherical coordinates. The
range map is returned by “SCAN” to subroutine “Get_Obstacles”. “Get_Obstacles” returns the
range map to “Interface_Steering” which passes it onto the steering model.

4. Obstacle Avoidance and the Previewed Path

The range map returned by “Get_Obstacles” is 3-D. The obstacle avoidance algorithm and
steering algorithm taken from reference (1) can only handle 2-D range maps. The 3-D map is
reduced to a 2-D map within “Interface_Steering” by the sorting of each vertical slice of the scan
array and by the selection of the minimum range in that slice. The minimum range in the vertical
slice is stored in the “RD” array. The horizontal angle “φ” associated with each vertical slice is
stored in the array “TH”. “RD” and “TH” are passed to subroutine “Avoid_Obstacles” along
with the position and yaw angle of the vehicle.

Subroutine “Avoid_Obstacles” calls the subroutine “CALSRS,” which calculates the average
range over the “RD” array and stores it in the variable “RSTAR”. The subroutine “CALCTH” is
then called and calculates the average of the product of the range and the angle over the arrays
“RD” and “TH”. The average is stored in the variable “THSTAR”. Finally, “Avoid_Obstacles”
calls “CALCTH,” which calculates the range within the 2-D range map along the “THSTAR”

18

angle. If “RSTAR” is greater than the range along “THSTAR,” then “RSTAR” is reduced by
20%.

“THSTAR” and “RSTAR” define a point on the preview path in terms of vehicle-centered polar
coordinates. The same point in the previewed path in inertial coordinates is then calculated and
stored in “XSTAR” and “YSTAR”. “XSTAR” and “YSTAR” define the point in the path that
vehicle should occupy at the end of the preview time.

“Avoid_Obstacles” returns “XSTAR” and “YSTAR” to “Interface_Steering”. “Interface_
Steering” calls “HUMAN_STEERING,” which adds the last “XSTAR” and “YSTAR” values to
the previewed path. The previewed path is used to determine the future route of the vehicle. The
algorithm for “HUMAN_STEERING” was covered in detail in section 2.

5. Interfacing the Human Steering and Vehicle Dynamics Models

The interface between the human steering model and the vehicle dynamics model is
accomplished with a series of FORTRAN2 subroutines. The external link into the DADS vehicle
simulation is via the user-defined force/torque subroutine “FR3512”. “FR3512” provides access
to the UserAlgorithm control element in which a control node is defined to allow steering control
torques to be applied to the steering actuator model. Movement of the steering actuator
components, which is attributable to the control torques, causes an angular change in the
vehicle’s steered wheels relative to the vehicle chassis, which in turn causes the vehicle to
change direction. Vehicle state information and vehicle parameter data are also collected in
subroutine “FR3512” when control input nodes are accessed. The control element input nodes
within the DADS vehicle model act as sensors for collecting vehicle state and parameter data.
The vehicle data are passed from “FR3512” to subroutine “VEH_STEER”. Within
“VEH_STEER,” vehicle data undergo unit conversions before being passed to subroutine
“INTERFACE_STEERING”. Further, “VEH_STEER” receives steering commands from
“INTERFACE_STEERING” in the form of steering angles and then converts these commands to
steering motor torques. The commanded steering torque is then passed back to “FR3512”.
“INTERFACE_STEERING” is the entrance into the human steering model. First, a call is made
to subroutine “HUMAN_DRIVER” to collect driver model parameters; next, a call is made to
subroutine “GET_OBSTACLES” to retrieve the obstacle data information in the form of a range
map. The range map data are used in the call to “AVOID_OBSTACLES,” which generates a
path for the vehicle to follow to avoid the obstacles. “AVOID_OBSTACLES” returns a
location, XSTAR and YSTAR, for the human steering model to steer the vehicle toward.

2Formula Translator

19

XSTAR and YSTAR are passed to subroutine “HUMAN_STEERING” which generates and
returns a commanded steering angle (DFW3).

5.1 Steering Commands and Steering Motor Torque Control

The steering command, which originates as a DFW within subroutine “HUMAN_STEERING,”
is a torque that is applied to the steering actuator model within the DADS vehicle simulation.
DFW is passed from subroutine “HUMAN_STEERING” via “INTERFACE_STEERING” to
subroutine “VEH_STEER” where it is converted from a commanded steering angle to a steering
motor torque, STRCOM. “VEH_STEER” employs two separate algorithms for converting
steering angles to steering motor torques, each independently applied, depending on the steering
system being modeled. The first is a simple proportional gain function wherein the output
steering motor torque is linearly proportional to the difference between the DFW and the present
steered wheel angle (RFWANG) multiplied by the steering gain coefficient (STGAIN).
RFWANG is the angle of the steered wheels with respect to the vehicle chassis. RFWANG is
typically the average of the right and left steered wheels when an Ackermann steering system is
employed. An Ackermann system uses a steering linkage geometry in which the right and left
wheels will turn to different angles, depending on the radius of the arc that each wheel traverses.
The basic proportional steering motor torque function is shown in equation 29.

 () STGAINRFWANGDFWSTRCOM ⋅−= (29)

The second or alternate algorithm is a velocity-dependent nonlinear decreasing gain function
wherein the output steering motor torque is linearly proportional to the difference between the
DFW and the RFWANG multiplied by a nonlinear steering gain function. The STGAIN is
modified by a velocity-dependent decreasing parabolic function based on the vehicle chassis
longitudinal velocity and a velocity gain-limiting coefficient (XDGLIM). The effect of this
nonlinear gain function on the steering system is to increase the applied steering motor torque
while the vehicle is at rest or during low speed travel. The increased steering motor torque is
needed to offset the increased resistance to turning the steered wheels while at rest or during low
vehicle speeds. The velocity-dependent steering motor torque function is shown in equation 30.

 () ()

 −⋅⋅−=

2
2 XDGLIM

XDSTGAINRFWANGDFWSTRCOM (30)

in which XD is the vehicle chassis longitudinal velocity.

The steering motor torque (STRCOM) is then passed back to subroutine “FR3512” where it is linked
to the output node for the UserAlgorithm Control element named FR_STEER_ACT_COMMAND.
The FR_STEER_ACT_COMMAND node within the DADS simulation control architecture is
further linked to the Control Output One-Body element named FR_STEER_ACT_TORQ.
STRCOM is applied as a ZL.TORQUE to the ROTARY_STEER_ACT body. The

3not an acronym

20

ROTARY_STEER_ACT body is the main component of the steering motor model within the
vehicle model. The steering motor torque is applied to the local z-axis of the cg triad of the
ROTARY_STEER_ACT body, which causes the steering actuator to rotate about a revolute joint4
connected to the vehicle chassis.

The rotary steering actuator body has an extended lever arm, perpendicular to its local z-axis and
acting as a simulated pitman arm (i.e., connecting rod), to convert the rotary steering motion into
a translational steering motion. A DRAG_LINK body is connected via spherical joints between
the extended lever of the rotary steering actuator and the steering RACK. A spherical joint
connects two component bodies in which relative rotary motion is allowed about all axes and
relative translational motion is not permitted along any axis. The drag link body transfers the
translational steering motion into a lateral movement of the steering rack body. The steering
rack body is connected via universal joints to a left and a right tie rod body, named, respectively,
LF_TIE_ROD and RF_TIE_ROD. A universal joint connects two component bodies in which
relative rotational motion is allowed about two axes and relative translational motion is not
allowed along any axis. The individual left and right tie rod bodies transfer the lateral steering
rack motion to their respective wheel hub bodies, LF_WHEEL_HUB and RF_WHEEL_HUB.
Each wheel hub body has a lever arm extended perpendicular to its steering axis; this arm acts as
a simulated steering knuckle. The tie rod bodies are connected via spherical joints to their
respective steering knuckles. These connections allow the lateral steering motion to be
converted into angular motion about the left and right steering axes.

Wheel bodies, LF_WHEEL and RF_WHEEL, are connected to their respective wheel hub bodies
by revolute joints. These joint connections allow the wheel bodies to rotate relative to the
vehicle chassis. The wheel bodies form the basis for the individual tire models that generate the
forces for displacing the vehicle chassis. Lateral displacement of the vehicle chassis is
accomplished by the generation of lateral forces within the tire models. The lateral forces for
turning, known as cornering forces, are created when the rolling wheel bodies have an angular
displacement about their steering axes, relative to the vehicle chassis. This angular displacement
of the wheel body creates a slip angle within the rolling tire model. Slip angle is defined as the
difference between the steered angle of the tire and the actual angle of tire travel relative to the
vehicle chassis. Slip angle is attributable to the deformation or twisting of the tire carcass during
cornering, which produces a resultant lateral force. This lateral force is transmitted from the tire
model through the wheel body to the vehicle chassis, which results in the lateral displacement or
turning of the vehicle.

4A revolute joint is a connection between two component bodies in which rotary motion is permitted about a single axis

(typically the z-axis), and relative translational motion is not permitted along any axis.

21

5.2 Vehicle Speed and Drive Torque Control

The DADS vehicle velocity during simulation runs is controlled through a UserAlgorithm
Control element that provides a control node to the user-defined force/torque subroutine
“FR3512”. The UserAlgorithm Control element, SPEED_CONTROL, has an output node
known as DRIVE_TORQUE. DRIVE_TORQUE is accessed through subroutine “FR3512,”
which calls the velocity-controlling subroutine “SPEED”. The control node information
RR_WHEEL_RATE, which provides the angular rate of the right rear wheel, is passed to
subroutine speed. The algorithm within subroutine SPEED is a simple velocity controller in
which driving and braking torques are generated, based on the angular rate of the simulated
vehicle’s right rear wheel. A relatively constant vehicle velocity is attained by the generation of
a drive torque output that is proportional to the angular rate error of the right rear wheel. First, a
desired angular wheel rate is set; then, the desired wheel rate is subtracted from the actual rate of
the right rear wheel. The differencing creates an angular rate error, which is then multiplied by a
torque gain constant. The resulting torque output is then limited to avoid generating excessive
braking or driving torques. The output drive torque is then passed back to the output control
node, DRIVE_TORQUE, via subroutine “FR3512”. The control node, DRIVE_TORQUE, is
linked to each of four Control Output One-Body elements. The Control Output One-Body
elements, RR_WHEEL_TORQUE, LR_WHEEL_TORQUE, RF_WHEEL_TORQUE, and
LF_WHEEL_TORQUE, represent drive and braking torque being distributed to each of the
vehicle’s four wheels.

5.3 Vehicle State and Data Parameters

The vehicle state and data parameters are collected within the DADS vehicle simulation and then
communicated to the human driver model through subroutine “FR3512”. The vehicle state and
parameter information is sensed and collected from the vehicle dynamics model in the form of
control node information and rigid body array data. The DADS global coordinates are equiva-
lent to the inertial coordinates in the human steering model. The control node information is

CHASSIS_X_POS - the global longitudinal position of the vehicle chassis
CHASSIS_Y_POS - the global lateral position of the vehicle chassis
CHASSIS_Z_POS - the global vertical position of the vehicle chassis
CHASSIS_X_VEL - the global longitudinal velocity of the vehicle chassis
CHASSIS_Y_VEL - the global lateral velocity of the vehicle chassis
CHASSIS_Z_VEL - the global vertical velocity of the vehicle chassis
CHASSIS_ROLL_ANG - the roll angle of the vehicle chassis
CHASSIS_PITCH_ANG – the pitch angle of the vehicle chassis
CHASSIS_YAW_ANG – the yaw angle of the vehicle chassis
CHASSIS_ROLL_RATE – the roll rate of the vehicle chassis
CHASSIS_PITCH_RATE – the pitch rate of the vehicle chassis
CHASSIS_YAW_RATE – the yaw rate of the vehicle chassis
CHASSIS_LOCAL_Y_VEL – the local lateral velocity of the vehicle chassis
FR_STEER_ACT_SENSOR – the angle of the rotary steering actuator with respect to the

22

vehicle chassis
FR_WHEEL_WRT_CHASSIS – the angle of the front wheel with respect to the vehicle chassis
RF_WHEEL_RATE – the angular rate of the right front wheel
RR_WHEEL_RATE – the angular rate of the right rear wheel

Rigid body array data are

NUMWHL – number of wheels on the vehicle
NUMRB – number of rigid bodies within the vehicle simulation
CRSTFR(1) – cornering stiffness of the right front wheel
CRSTFR(2) - cornering stiffness of the right rear wheel
CRSTFL(1) - cornering stiffness of the left front wheel
CRSTFL(2) - cornering stiffness of the left rear wheel
VMASS – mass of the vehicle
IZZ5 – yaw moment of inertia of the vehicle
ZFR(1) – load on the right front tire
ZFR(2) – load on the right rear tire
ZFL(1) – load on the left front tire
ZFL(2) – load on the left rear tire

Control node information is collected within the vehicle simulation through the use of Control
Output One-Body elements and Control Output Two-Body elements. We access the Control
Output One-Body element, CHASSIS_PITCH_ANG, for example, by specifying the simulation
body of interest, CHASSIS_SENSOR, the body’s triad where the sensing will take place,
CHASSIS_SENSOR_CG, and the type of data to collect from this location. For this example, to
collect the chassis pitch angle, the information collected was the second Bryant angle. A triad is
defined within the simulation architecture as a 3-D coordinate origin. We access the Control
Output Two-Body element, FR_STEER_ACT_SENSOR, for example, by specifying the first
simulation body of interest, CHASSIS, the first body’s triad, ROT_STR_ACT_MNT, the second
simulation body of interest, ROTARY_STEER_ACT, the second body’s triad,
ROTARY_STEER_ACT, and the type of data to be collected. The information collected in this
example is the angular difference about the z-axes of the triads of the two bodies. Control node
information, such as the two examples given, is then passed from the DADS simulation by a
GETNODE function call within the user-defined subroutine “FR3512”. This information is then
passed to subroutine “VEH_STEER” for use within the human driver model.

Rigid body array data are collected directly through subroutine “FR3512” by a call to the
function INDXAR. This function returns the index of the desired data element from the array of
interest. This index is then used to return the desired value from the array. The arrays that may
be searched via the INDXAR function are

A – all real data for the system
IA – all integer data for the system
Q – global generalized coordinates
QD – global generalized velocities

23

QDD – global generalized accelerations
FRC – global generalized forces

To find the index of the desired element, the function call to INDXAR must include the name of
the array being searched, the dimension of the solution (2-D or 3-D), the module number of the
element, the instance of the element, the index of the element array, and the “IA” array. For
example, for us to acquire the value for ZFR(1), the normal force on the right front tire, the
following must be specified in the call to INDXAR:

ZFR(1) = A(INDXAR(‘A’,3,31,3,42,IA))
in which

A – the name of the real data array
3 – indicates a 3-D solution
31 – tire force element module number
3 – the instance of the tire element (the right front tire is the third instantiation of the tire
element)
42 – the index of the normal force in the tire element
IA – the name of the integer data array

This value, along with the other values acquired from the rigid body array, are then passed from
subroutine “FR3512” to subroutine “VEH_STEER”. The rigid body array data and the control
node information are then passed to subroutine “INTERFACE_STEERING” for use within the
human driver model.

6. Vehicle Dynamics Model

6.1 High Mobility Multipurpose Wheeled Vehicle (HMMWV) Model

The DADS vehicle dynamics model chosen for interfacing to the human driver model was a
model of the HMMWV that was developed by the University of Iowa’s Center for Virtual
Proving Ground Simulation. A HMMWV model was selected since it would likely enable a
more direct comparison with the original driver model DADS interfacing results. The DADS
HMMWV, developed by the University of Iowa, is an advanced 22-body model that includes the
ability to simulate propulsion, braking, and steering. During development of the interface
between the human driver model and the DADS vehicle dynamics model, a surrogate DADS
vehicle model was employed. This vehicle model contained a rotary, hydraulic steering system,
and the development of the steering control algorithms focused upon this type of steering system.
When the human driver model was interfaced to the University of Iowa-developed HMMWV, a

24

few modifications of the model were required to enable the use of the rotary steering controller.
Further, the HMMWV model required the addition of a number of control architecture elements.

6.2 Steering Control Modifications

The HMMWV, as obtained from University of Iowa, employs a “rack and pinion” type steering
system, in which the steering rack is driven laterally by a translational actuator. The ends of the
steering rack are attached to tie rods at a joint, which transmit the lateral translational motion to
the steering knuckles. The steering knuckles, which mount the wheel hubs and wheels, convert
the translational motion to angular motion for steering the wheels. The human driver model
employs a rotary steering actuator control algorithm; thus, a rotary steering actuator model needed
to be added to the HMMWV model. The modification required disabling the HMMWV model’s
present translational actuator and the fitting of a rotary actuator and required linkage. A rotary
steering actuator body, ROTARY_STEER_ACT, was connected to the HMMWV chassis by a
revolute joint. The rotary steering actuator body has an extended lever, acting as a pitman arm. A
drag link body, DRAG_LINK, is connected to the pitman arm via a spherical joint. The drag link
body uses another spherical joint at its other end to connect to the steering rack body, RACK.
This actuator and linkage model convert the rotary steering input into the lateral translational
motion required by the HMMWV model. The rotary steering input, STRCOM, is the commanded
steering motor torque from the vehicle steering interface model, “VEH_STEER”. To properly
control the steering torque, a DADS friction element was developed and included in the steering
motor model. The friction element acts as a damper in the feedback steering control system. The
friction element, ROT_STEER_ACT_FRICT, takes the form of bearing friction within the rotary
steering actuator body and is applied to the revolute joint, REV_ROTSTR_ACT_CHASS, that
connects the rotary steering actuator to the vehicle chassis. The bearing friction is based on the
following specifications:

bearing radius – 2.0 inches

bearing height – 4.0 inches

static coefficient of friction – 0.2

dynamic coefficient of friction – 0.15

linear velocity threshold – 0.001 inch/second

The frictional damper is necessary within the steering motor model to alleviate steering system
control jitter during transitional steering commands.

6.3 Control Elements for Vehicle State Sensing and Commanded Actuation

Control element additions are required in the DADS vehicle model for the human driver to
receive vehicle state information and to output driving commands. A series of Control Input

25

One-Body and Control Input Two-Body elements was added to the University of Iowa
HMMWV model. A comprehensive listing of the control input elements is included in
section 4.3. These control input elements function as virtual sensors to acquire the present
vehicle state during a simulation, which is required by the human driver steering controller.
Control Output One-Body elements were added to the vehicle model to function as virtual
actuators controlled by the human driver model. The control output elements are

FR_STEER_ACT_TORQ - for actuating the rotary steering actuator

RR_WHEEL_TORQUE - for powering the right rear wheel

LR_WHEEL_TORQUE – for powering the left rear wheel

RF_WHEEL_TORQUE – for powering the right front wheel

LF_WHEEL_TORQUE – for powering the left front wheel

These control output elements allow the human driver model to apply control torques to the
vehicle dynamics model during a simulation run to alter its position and velocity.

7. Validation of HMMWV Results

Figure 5 shows a view of the slalom course and the HMMWV model. The slalom course
consists of a single lane entry, a two-lane section with two square obstacles, and a single lane
exit. The boundaries of the course are lined with “Jersey” barriers. The first obstacle abuts the
left-hand Jersey barrier boundary. The second obstacle abuts the right-hand Jersey barrier
boundary. Figure 6 shows a series of frames of the HMMWV model maneuvering through the
slalom course.

The slalom course has the same geometry in the X-Y plane as the course described in reference
(1). The entry and exit lanes are 12 feet wide and 175 feet long. The two-lane section is 24 feet
wide and 324 feet long. The two square obstacles measure 12 feet on each side. The first
obstacle is 100 feet from the start of the two-lane section. The second obstacle is 212 feet from
the start of the two-lane section.

Figure 7 shows the results of a test run of the HMMWV model through the slalom course. The
neuromuscular delay and “look-ahead” time used are the same as those in reference (1). The
HMMWV accelerates in the entry lane and reaches 40 mph as the vehicle enters the two-lane
section. The vehicle then maintains 40 mph for the rest of the course. This is the speed used for
similar runs in reference (1).

26

Figure 5. HMMWV in slalom track.

Figure 6. HMMWV maneuvering through the slalom course.

27

Figure 7. Planned and actual vehicle path through slalom course.

In Figure 7, the heavy dark blue lines are the Jersey barriers defining the course boundaries. The
light blue line is the planned or previewed path. Each of the diamond symbols indicates an
“XSTAR,YSTAR” pair generated by subroutine “Avoid_Obstacles”. The dark purple line is the
path followed by the vehicle’s center of mass. Each of the squares is the vehicle’s position as
reported by the DADS simulation model.

Figure 8 shows a comparison between the steering model developed in this report, the existing
steering model, and experimental data in reference (1). The slalom course, vehicle type, and
speed driven are the same in all three cases. The red line in the figure is the path of the vehicle’s
cg calculated by the model described in this report. The heavy black line is the model runs from
reference (1). The thin black lines are experimental runs performed by human drivers as
reported in reference (1). The red path lies close to or within the set of experimental paths, thus
validating that the current model does a reasonable job of simulating human steering for this
vehicle on this course.

30

25

20

15

10

-5

0
900

Obstacles

Planned Path

Vehicle Path

28

Figure 8. Comparison of steering models and experimental results.

8. Conclusions

The steering model described in this report successfully simulates a human driving a vehicle
through a series of 3-D obstacles. The model simulates the solid geometry of a range finding,
driving sensor attached to the vehicle and operating in a simple 3-D virtual environment. The
model also simulates a control loop representing a human steering, with neuromuscular delay
and look-ahead time. The sensor model and the steering model are coupled to a detailed vehicle
model generated in the commercial off-the-shelf (COTS) simulation environment DADS.

If a human in the loop is used to provide steering commands to the vehicle dynamics model, then
the model must be simplified to run in real time. If a predetermined series of steering commands
is used, these commands will not reflect the feedback that occurs between the steering
commands and vehicle dynamics. This model allows for complex vehicle tests to be simulated
while the feedback is maintained between the steering commands and the vehicle dynamics but
without a human in the loop. In this way, complex tests can be simulated efficiently on small
computers at slower than real time. Running the simulation in the background can provide input
to parametric studies. These studies estimate which candidate vehicle designs will perform best
on a standard test course. The results could be used to guide vehicle design or for better
planning of physical experiments.

 Vehicle X Position

V
eh

ic
le

 Y
 P

os
iti

on

B12

BIO

eoe

B06

604

802

800

79B

r

600 700 BOO 900 taoa 1100

29

9. References

1. MacAdam, C. C. Development of Driver/Vehicle Steering Interaction Model for Dynamics
Analysis; U.S. Army Tank-Automotive Command, Research, Development & Engineering
Center: Warren, MI, December 1988.

2. Boyce, W. E.; DiPrima, R. C. Elementary Differential Equations and Boundary Value
Problems; 2nd Edition; John Wiley and Sons, Inc., New York, 1969.

3. Butkov, E. Mathematical Physics; Andison-Wesley Publishing Company, Reading,
Massachusetts, 1968.

4. Glassner, A. S. Graphic Gems; Academic Press Inc., San Diego, CA, 1990.

30

INTENTIONALLY LEFT BLANK.

31

Appendix A. Code Makefile

 * CODE MAKEFILE *

#CC = CC
#CFLAGS = -g -strictIEEE -static

#NOTE: Use SGI make command /usr/bin/make

##----------- IRIX defs--------------------------
CXX = CC
CFLAGS =-g -O -D_POSIX_PTHREAD_SEMANTICS \
 -I/other/OTB.rp/include/global \
 -I/other/OTB.rp/include/libinc/ \
 -I/other/OTB.rp/include/gnuinc \
 -I/other/OTB.rp/libsrc/libctdb/ \
 -I/other/OTB.rp/libsrc/libctdb/compiler/ \
 -I/other/OTB.rp/

LDFLAGS2= -g -lm -L/other/OTB.rp/lib
LIBS2= -lctdb -lcoordinates -lgeometry -lgcs -lconstants -lvecmat -lreader -
lgeo3d -lbasic -lm

FTNLIBS=-L /usr/lib/DCC -lc -lftn
#CCLIBS= -L /usr/lib/CC -I /usr/include

.SUFFIXES: .o .f .bd

DADSLIBDIR = /e3a/dads95/dadslib/

MEXLIBDIR = /e3a/dads95/dadslib/sgi64/

LMGRLIB = liblmgr.a

DADSLIBSMEX= \
 ${MEXLIBDIR}blockda.o \
 ${MEXLIBDIR}revbd.o \
 ${MEXLIBDIR}xdummy.o \
 ${MEXLIBDIR}mod3d.a \
 ${MEXLIBDIR}analysis.a \
 ${MEXLIBDIR}super3d.a \
 ${MEXLIBDIR}mod3d.a \
 ${MEXLIBDIR}analysis.a \
 ${MEXLIBDIR}mod3d.a \
 ${MEXLIBDIR}controls3d.a \
 ${MEXLIBDIR}controls.a \
 ${MEXLIBDIR}harwell.a \
 ${MEXLIBDIR}tools.a \
 ${MEXLIBDIR}daftools.a \
 ${MEXLIBDIR}mathtools.a \
 ${MEXLIBDIR}dadsblas.a \
 ${MEXLIBDIR}${LMGRLIB} \

32

 ${MEXLIBDIR}libparent.a \
 ${MEXLIBDIR}libcp.a \
 ${MEXLIBDIR}ctools.a \
 ${MEXLIBDIR}expressionparser.a \
 ${MEXLIBDIR}mxxdummy.o \
 ${MEXLIBDIR}tecdummy.o \
 ${MEXLIBDIR}cgdummy.o \
 ${MEXLIBDIR}ez5dummy.o

DADSLIBS= \
 ${DADSLIBDIR}blockda.o \
 ${DADSLIBDIR}revbd.o \
 ${DADSLIBDIR}xdummy.o \
 ${DADSLIBDIR}mod3d.a \
 ${DADSLIBDIR}analysis.a \
 ${DADSLIBDIR}super3d.a \
 ${DADSLIBDIR}mod3d.a \
 ${DADSLIBDIR}analysis.a \
 ${DADSLIBDIR}mod3d.a \
 ${DADSLIBDIR}controls3d.a \
 ${DADSLIBDIR}controls.a \
 ${DADSLIBDIR}harwell.a \
 ${DADSLIBDIR}tools.a \
 ${DADSLIBDIR}daftools.a \
 ${DADSLIBDIR}mathtools.a \
 ${DADSLIBDIR}dadsblas.a \
 ${DADSLIBDIR}${LMGRLIB} \
 ${DADSLIBDIR}libparent.a \
 ${DADSLIBDIR}libcp.a \
 ${DADSLIBDIR}ctools.a \
 ${DADSLIBDIR}expressionparser.a \
 ${DADSLIBDIR}mxxdummy.o \
 ${DADSLIBDIR}tecdummy.o \
 ${DADSLIBDIR}cgdummy.o \
 ${DADSLIBDIR}ez5dummy.o

FORT_OBJS = \
 Get_Obstacles2.o\
 Human_Driver.o\
 Avoid_Obstacles.o\
 Human_Steering.o\
 calcrs.o\
 calcth.o\
 checkrth.o\
 gmprd.o\
 main.o\
 Interface_Steering.o\
 fr3512.o\
 veh_steer.o\
 speed.o\
 tranxy.o

ndads3d : ${FORT_OBJS}
 f77 -static -g -n32 -mips4 \
 -o ndads3d \
 ${FORT_OBJS} \
 ${FTNLIBS} \
 ${CFLAGS} \

33

 ${LDFLAGS2} \
 $(LIBS2) \
 ${DADSLIBDIR}progrm.o \
 ${DADSLIBDIR}matdummy.o \
 $(DADSLIBS) \
 -lC -lc -v

mexfile: ${FORT_OBJS}
 mex -v \
 -output dads3d.mexsg64 $(DADSLIBDIR)dads3d.c \
 ${FORT_OBJS} \
 $(DADSLIBDIR)cxxhead.o \
 $(DADSLIBSMEX) -lC -lc

main.o: main.f
 @echo
 @echo Compiling $*.f...
 f77 $(CFLAGS) -static -c -g -n32 -mips4 main.f -o main.o
 @echo --- Done ---
 @echo

Avoid_Obstacles.o: Avoid_Obstacles.f
 @echo
 @echo Compiling $*.f...
 f77 $(CFLAGS) -static -c -g -n32 -mips4 Avoid_Obstacles.f -o
Avoid_Obstacles.o
 @echo --- Done ---
 @echo

calcrs.o: calcrs.f
 @echo
 @echo Compiling $*.f...
 f77 $(CFLAGS) -static -c -g -n32 -mips4 calcrs.f -o calcrs.o
 @echo --- Done ---
 @echo

calcth.o: calcth.f
 @echo
 @echo Compiling $*.f...
 f77 $(CFLAGS) -static -c -g -n32 -mips4 calcth.f -o calcth.o
 @echo --- Done ---
 @echo

checkrth.o: checkrth.f
 @echo
 @echo Compiling $*.f...
 f77 $(CFLAGS) -static -c -g -n32 -mips4 checkrth.f -o checkrth.o
 @echo --- Done ---
 @echo

Get_Obstacles2.o: Get_Obstacles2.f
 @echo
 @echo Compiling $*.f...
 f77 $(CFLAGS) -static -c -g -n32 -mips4 Get_Obstacles2.f -o
Get_Obstacles2.o
 @echo --- Done ---
 @echo

34

gmprd.o: gmprd.f
 @echo
 @echo Compiling $*.f...
 f77 $(CFLAGS) -static -c -g -n32 -mips4 gmprd.f -o gmprd.o
 @echo --- Done ---
 @echo

Human_Driver.o: Human_Driver.f
 @echo
 @echo Compiling $*.f...
 f77 $(CFLAGS) -static -c -g -n32 -mips4 Human_Driver.f -o
Human_Driver.o
 @echo --- Done ---
 @echo

Human_Steering.o: Human_Steering.f
 @echo
 @echo Compiling $*.f...
 f77 $(CFLAGS) -static -c -g -n32 -mips4 Human_Steering.f -o
Human_Steering.o
 @echo --- Done ---
 @echo

Interface_Steering.o: Interface_Steering.f
 @echo
 @echo Compiling $*.f...
 f77 $(CFLAGS) -static -c -g -n32 -mips4 Interface_Steering.f -o
Interface_Steering.o
 @echo --- Done ---
 @echo

fr3512.o: fr3512.f
 @echo
 @echo Compiling $*.f...
 f77 $(CFLAGS) -static -c -g -n32 -mips4 fr3512.f -o fr3512.o
 @echo --- Done ---
 @echo

veh_steer.o: veh_steer.f
 @echo
 @echo Compiling $*.f...
 f77 $(CFLAGS) -static -c -g -n32 -mips4 veh_steer.f -o veh_steer.o
 @echo --- Done ---
 @echo

speed.o: speed.f
 @echo
 @echo Compiling $*.f...
 f77 $(CFLAGS) -static -c -g -n32 -mips4 speed.f -o speed.o
 @echo --- Done ---
 @echo

tranxy.o: tranxy.f
 @echo
 @echo Compiling $*.f...
 f77 $(CFLAGS) -static -c -g -n32 -mips4 tranxy.f -o tranxy.o
 @echo --- Done ---
 @echo

35

 * FORTRAN CODE FOR DRIVER MODEL *

 SUBROUTINE Avoid_Obstacles (THETRAD, DELTHRAD, NPOWER, XV, YV,
 1 ZV, PSIRAD, JMAX, RD, TH,
 1 XSTAR, YSTAR)
C
C
 double precision RD(200),TH(200),THETRAD, DELTHRAD,
 & XV,YV,ZV,PSIRAD,XSTAR,YSTAR,
 & PI,SUM1,SUM2,TRSTAR,TTHETA,RSTAR,
 & THSTAR
C
 DATA PI /3.1416/
C
C
 SUM1 = 0.0
 SUM2 = 0.0
 DO 1000 K = 1, JMAX
 L = (JMAX - K) + 1
 SUM1 = RD(L)*TH(L) + SUM1
 SUM2 = RD(L) + SUM2
C
C
1000 CONTINUE
 TRSTAR = SUM2/JMAX
 TTHETA = SUM1/SUM2
C
 CALL CALCRS(JMAX, RD, TH, THETRAD, DELTHRAD, RSTAR)
C
 CALL CALCTH(JMAX, RD, TH, THETRAD, DELTHRAD, NPOWER, THSTAR)
C
 CALL CHECKRTH(JMAX,RD,TH,RSTAR,THSTAR)

 XSTAR = RSTAR*COS(PSIRAD + THSTAR) + XV
 YSTAR = RSTAR*SIN(PSIRAD + THSTAR) + YV
C
C
 return
 END
C

C
C Subroutine Get_Obstacles reads information on 3D obstacles in obstacle
C centered coordinates, transfroms to inertial cartesian coordinates and
C the to vehicle center coordinate both cartesian and polar. The
subroutine
C then calculates the distance to the obstacles along a set of sensor rays.
C
C

36

*

*

 SUBROUTINE Get_Obstacles (FIRST, TDelta, SMAX_PHI, SMAX_THETA,
 1 RMAX,SDELTA_PHI, SDELTA_THETA,
 1 XVE, YVE, ZVE, Psi,Theta, Phi,
 1 SCAN_RANGE,SCAN_PHI,SCAN_THETA)
C
 dimension NPOLY(10)
C
C Surfaces in object types. # surfaces, # corners in surface, corner indexes
 DIMENSION NUM_SURF(10), NUM_CORN(10,10), INDEX_CORN(10,10,8)
C
 dimension IOBJ_TYPE(200),ID(200)
C
C
 double precision TDelta,SMAX_PHI,SMAX_THETA,RMAX,SDELTA_PHI,
 & SDELTA_THETA,XVE,YVE,ZVE,Psi,Theta,Phi,
 & SCAN_RANGE(40,40),SCAN_THETA(40),
 & SCAN_PHI(40),RD(200),TH(200),XTD(18),
 & YTD(18),ZTD(18),XTC(10),YTC(10),ZTC(10),
 & XT(10,18),YT(10,18),ZT(10,18),
 & XCI(200),YCI(200),
 & ZCI(200),R_Bound(200),
 & E_PSI(200),E_THETA(200),E_PHI(200),
 & XCV(200),YCV(200),ZCV(200),RV(200),
 & VPHI(200),VTHETA(200),DELTA_ANGLE(200),
 & A(3,3),B(3,3),XTSUM,YTSUM,ZTSUM,R,PSI_E,
 & THETA_E,PHI_E,CXE,CYE,CZE,CX,CY,CZ,XV,YV,
 & ZV,PI,EPSILON
 integer num_theta,kmax,count
 LOGICAL FIRST
 CHARACTER*50 COMMENT
C
 DATA PI /3.1415926545/
 DATA EPSILON /0.000000001/
 data count /1/
C
C
 IF(FIRST) THEN
C
C Read in obstacles from files
C
 OPEN(UNIT=9,FILE='Course_Obstacles.txt')
C
 REWIND 9

 OPEN(UNIT=4,FILE='Obstacles_Check.txt')
C
 REWIND 4
C
 READ (9,*) COMMENT

37

 READ (9,*), COMMENT
C
 READ (9,*) NUM_TYPE
 DO 10 I = 1, NUM_TYPE
C
C Initialize the sum of the corner points
 XTSUM = 0.0D0
 YTSUM = 0.0D0
 ZTSUM = 0.0D0
C
 READ (9,*) COMMENT
 READ (9,*) COMMENT
C
 READ (9,*) NPOLY(I)
 READ (9,*) COMMENT
 READ (9,*) COMMENT
 DO 20 J = 1, NPOLY(I)
C
 READ (9,*), XTD(J),YTD(J),ZTD(J)
C
 XTD(J) = XTD(J)/0.3048
 YTD(J) = YTD(J)/0.3048
 ZTD(J) = ZTD(J)/0.3048
C
 PRINT 15, I,J,XTD(J),YTD(J),ZTD(J)
 15 FORMAT("TYPE = ",I5," Corner # = ",I5," XTD = ",
 1 F10.7," YTD = ",F10.7," ZTD = ",F10.7)
 XTSUM = XTSUM + XTD(J)
 YTSUM = YTSUM + YTD(J)
 ZTSUM = ZTSUM + ZTD(J)
 20 CONTINUE
C
C Compute the center of the object type in design coordinate
C
 XTC(I) = XTSUM/NPOLY(I)
 YTC(I) = YTSUM/NPOLY(I)
 ZTC(I) = ZTSUM/NPOLY(I)
C
 R_BOUND(I) = 0.0D0
C
 READ (9,*) COMMENT
C
 READ(9,*) NUM_SURF(I)
 DO 30 J = 1, NUM_SURF(I)
C
 READ (9,*) COMMENT
C
 READ(9,*) NUM_CORN(I,J)
C
 READ (9,*) COMMENT
C
 DO 40 K = 1, NUM_CORN(I,J)
 READ(9,*) INDEX_CORN(I,J,K)
 40 CONTINUE
 30 CONTINUE
C
C Shift the corner points to a coordinate system with it origin at the

38

C center of volume of the the obstacle type
C
 DO 310 J = 1, NPOLY(I)
C
 XT(I,J) = XTD(J) - XTC(I)
 YT(I,J) = YTD(J) - YTC(I)
 ZT(I,J) = ZTD(J) - ZTC(I)
C
 R = SQRT(XT(I,J)**2 + YT(I,J)**2 + ZT(I,J)**2)
C
 PRINT 25, I, J, XT(I,J), YT(I,J), ZT(I,J),R
 25 FORMAT(" TYPE = ",I5,"CORNER = ",I5," XT = ",F10.7,
 1 " YT = ",F10.7," ZT = ",F10.7," R = ",F10.7)
C
 IF(R .GT. R_BOUND(I)) THEN
 R_BOUND(I) = R
 ENDIF
 310 CONTINUE
 10 CONTINUE
C
 READ (9,*) COMMENT
C
 READ (9,*) NUM_OBJ
C
 WRITE(4,315)
 315 FORMAT("Obj # Obj Type Corner # ",
 1 " CX CY CZ")
CC
CC
C
C
 DO 410 I = 1, NUM_OBJ
C
 READ (9,*) COMMENT
C
 READ(9,*) IOBJ_TYPE(I)
C Input the location of the center of design coordinate system
C
 READ (9,*) COMMENT
C
 READ(9,*) XCI(I),YCI(I),ZCI(I)
C
 XCI(I) = XCI(I)/0.3048
 YCI(I) = YCI(I)/0.3048
 ZCI(I) = ZCI(I)/0.3048
C
 PRINT 605, I,XCI(I),YCI(I),ZCI(I)
 605 FORMAT("I = ",I5," XCI = ",F12.7," YCI = ",F12.7,
 1 " ZCI = ",F12.7)
C Input the Euler angle to transform the orientation
C
 READ (9,*) COMMENT
C
 READ (9,*) PSI_E, THETA_E, PHI_E
 PRINT 650,PSI_E,THETA_E,PHI_E
 650 FORMAT(" PSI_E = ",E12.7," THETA_E = ",E12.7,
 1 " PHI_E = ",E12.7)

39

C
C Convert from degrees to radians
 E_PSI(I) = PSI_E*(PI/180.0)
 E_THETA(I) = THETA_E*(PI/180.0)
 E_PHI(I) = PHI_E*(PI/180.0)
C
C
C Checking the placement of obstacles
 K = IOBJ_TYPE(I)
C
C Calculate transformation matrix from object centered to inertial
coordinates
 CALL BRYANT_MATRIX(E_PSI(I), E_THETA(I), E_PHI(I), B)
C

 PRINT 755,E_PSI(I), E_THETA(I), E_PHI(I)
 755 FORMAT("E_PSI =",F12.5,"E_THETA =",F12.5,
 1 "E_PHI =",F12.5)
 PRINT 607, XCI(I),YCI(I),ZCI(I)
 607 FORMAT("XCI = ",F12.7," YCI = ",F12.7,
 1 " ZCI = ",F12.7)
CC
C
 PRINT 315

C Transforming the corner points to vehicle Cartesian and vehicle polar
 DO 705 J1 = 1, NPOLY(K)
C
C Reoriented corner point in object centered coordinates
C
 CALL INVERS_TRANFORMER (B,XT(K,J1),YT(K,J1),ZT(K,J1),
 1 XCI(I),YCI(I),ZCI(I),
 1 CX,CY,CZ)
C
C Reoriented corner point in object centered coordinates
C
 CXE = CX
 CYE = CY
 CZE = CZ
C
 PRINT 300, I,K,J1,CXE,CYE,CZE
 WRITE(4,300)I,K,J1,CXE,CYE,CZE
 300 FORMAT(I7,2(",",I7),3(",",F12.5))
 705 CONTINUE
 410 CONTINUE
C
 ENDIF
C
 XV = XVE
 YV = YVE
 ZV = ZVE
C
C
C Update obstacles in vehicle coordinates to account for vehicle movement
C
C Calculate the transformation matrix to vehicle coordinates
 CALL BRYANT_MATRIX(Psi, Theta, Phi,A)

40

C
C Transform object centers to vehicle Cartesian and polar coordinates
C
 CALL VEH_COORDS(A, RMAX, SMAX_PHI, SMAX_THETA, NUM_OBJ,
 1 XCI,YCI,ZCI,XV,YV,ZV, R_BOUND,NUM_SEN,
 1 XCV,YCV,ZCV,IOBJ_TYPE,ID,RV,VPHI,
 1 VTHETA,DELTA_ANGLE)

C
C Generate rays from sensor to all obstacles
C
 CALL SCAN (SMAX_PHI,SMAX_THETA,SDELTA_PHI,SDELTA_THETA,
 1 RMAX, NUM_SEN, XCV,YCV,ZCV,IOBJ_TYPE,ID,RV,VPHI,
 1 VTHETA,XCI,YCI,ZCI,NPOLY, XT,YT,ZT,NUM_SURF,
 1 NUM_CORN,INDEX_CORN,DELTA_ANGLE,R_BOUND,E_PSI,
 1 E_THETA,E_PHI,XV,YV,ZV,A,
 1 SCAN_PHI,SCAN_THETA,SCAN_RANGE)
C
 NUM_THETA = INT(SMAX_THETA/SDELTA_THETA)*2 + 1
C
C
C
 KMAX = INT(SMAX_PHI/SDELTA_PHI)*2 + 1
C
C
C
 100 FORMAT(I6)
 200 FORMAT(2E14.6)
 400 FORMAT(3E14.6)
C
C
 RETURN
 END
C

**
**

 SUBROUTINE BRYANT_MATRIX(Psi, Theta, Phi,A)
C
C Subroutine calculates the transformation matrix between coordinate
C system in term of three Bryant angles. Assume a rotation about x (phi)
C followed by a rotation about the transformed y (theta), followed by
C rotation about the twice transformed z (psi)
C
 double precision A(3,3),Psi,Theta,Phi,COS_PHI_1,SIN_PHI_1,
 & COS_THETA_2,SIN_THETA_2,COS_PSI_3,
 & SIN_PSI_3
C
 COS_PHI_1= COS(Phi)
 SIN_PHI_1= SIN(Phi)
 COS_THETA_2= COS(Theta)
 SIN_THETA_2= SIN(Theta)

41

 COS_PSI_3= COS(Psi)
 SIN_PSI_3= SIN(Psi)

 A(1,1) = COS_THETA_2*COS_PSI_3
 A(1,2) = COS_THETA_2*SIN_PSI_3
 A(1,3) = -SIN_THETA_2

 A(2,1) = SIN_PHI_1*SIN_THETA_2*COS_PSI_3 - COS_PHI_1*SIN_PSI_3
 A(2,2) = SIN_PHI_1*SIN_THETA_2*SIN_PSI_3 + COS_PHI_1*COS_PSI_3
 A(2,3) = SIN_PHI_1*COS_THETA_2

 A(3,1) = COS_PHI_1*SIN_THETA_2*COS_PSI_3 + SIN_PHI_1*SIN_PSI_3
 A(3,2) = COS_PHI_1*SIN_THETA_2*SIN_PHI_3 - SIN_PHI_1*COS_PHI_3
 A(3,3) = COS_PHI_1*COS_THETA_2

 RETURN
 END
C

 SUBROUTINE TRANFORMER (A,X1,Y1,Z1,X0,Y0,Z0,X2,Y2,Z2)
C
C Transforms between 3D coordinate system that are rotated and displaced
C
 double precision A(3,3),X1,Y1,Z1,X0,Y0,Z0,X2,Y2,Z2
C
 X2 = A(1,1)*(X1-X0) + A(1,2)*(Y1-Y0) + A(1,3)*(Z1-Z0)
 Y2 = A(2,1)*(X1-X0) + A(2,2)*(Y1-Y0) + A(2,3)*(Z1-Z0)
 Z2 = A(3,1)*(X1-X0) + A(3,2)*(Y1-Y0) + A(3,3)*(Z1-Z0)
C
 RETURN
 END
C

 SUBROUTINE INVERS_TRANFORMER (A,X1,Y1,Z1,X0,Y0,Z0,X2,Y2,Z2)
C
C Inverse Transformation between coordinate systems 1 and 2 that
C are rotated by the inverse of matrix A and displaced to point 0
C
 double precision A(3,3),X1,Y1,Z1,X0,Y0,Z0,X2,Y2,Z2
C
 X2 = (A(1,1)*X1 + A(2,1)*Y1 + A(3,1)*Z1) + X0
 Y2 = (A(1,2)*X1 + A(2,2)*Y1 + A(3,2)*Z1) + Y0
 Z2 = (A(1,3)*X1 + A(2,3)*Y1 + A(3,3)*Z1) + Z0
C
 RETURN

42

 END
C

 SUBROUTINE VEH_COORDS(A, RMAX, SMAX_PHI, SMAX_THETA, NUM_OBJ,
 1 XCI,YCI,ZCI,XV,YV,ZV, R_BOUND,NUM_SEN,
 1 XCV,YCV,ZCV,IOBJ_TYPE,ID,RV,VPHI,
 1 VTHETA,DELTA_ANGLE)
C
C
 dimension IOBJ_TYPE(200),ID(200)
C
C
C
 double precision XCI(200),YCI(200),ZCI(200),R_Bound(200),
 & XCV(200),YCV(200),ZCV(200),
 & RV(200),VPHI(200),
 & VTHETA(200), DELTA_ANGLE(200),A(3,3),
 & XMV,YMV,ZMV,XV,YV,ZV,RANGE,EPSILON,
 & DELTA_A,PI,PHI,LEFT_SCAN,RIGHT_SCAN,
 & RATIO,THETA,UPSCAN,DOWNSCAN,RMAX,
 & SMAX_PHI,SMAX_THETA
C
 DATA PI /3.1415926545/
 DATA EPSILON /0.000000001/
C
 NUM_SEN = 0
 J = 0
 LAST_J = 0
C
 DO 10 I = 1, NUM_OBJ
C
 I_OBJ = IOBJ_TYPE(I)
C
 CALL TRANFORMER (A,XCI(I),YCI(I),ZCI(I)
 1 ,XV,YV,ZV,XMV,YMV,ZMV)
C
C Compute the range to the Jth corner of the Ith obstacle
 RANGE = SQRT(XMV**2 + YMV**2 + ZMV**2)
C Compute the angle subtended by the bounding sphere for the Ith object
 IF(RANGE .GT. EPSILON) THEN
 IF(RANGE .GT. R_BOUND(I_OBJ)) THEN
 DELTA_A = ASIN(R_BOUND(I_OBJ)/RANGE)
 ELSE
 DELTA_A = PI/2.0
 ENDIF
 ELSE
 DELTA_A = PI/2.0
 ENDIF
C
C Check to see if the object bounding sphere is within sensor range
 IF((RANGE - R_BOUND(I_OBJ)) .LE. RMAX) THEN

43

C
C PHI = ASIN(YMV/(SQRT(XMV**2 + YMV**2)))

 IF(XMV .GE. 0.0) THEN
 PHI = ASIN(YMV/(SQRT(XMV**2 + YMV**2)))
 ELSE
 IF(YMV .GE. 0.0) THEN
 PHI = PI - ASIN(YMV/
 1 (SQRT(XMV**2 + YMV**2)))
 ELSE
 PHI = -1.0*PI - ASIN(YMV/
 1 (SQRT(XMV**2 + YMV**2)))
 ENDIF
 ENDIF
C
 LEFT_SCAN = SMAX_PHI
 RIGHT_SCAN = -1.0*SMAX_PHI
C
 RATIO = (YMV/(SQRT(XMV**2 + YMV**2)))
C
C Check to see if the object bounding sphere is with the horizontal scan
 IF(((PHI - DELTA_A).LT.LEFT_SCAN) .OR.
 1 ((PHI + DELTA_A).GT. RIGHT_SCAN)) THEN
C
C Compute the pitch angle measure in the transformed XZ plane from Z
clockwise
C (the XY plan is at 90 degrees)
 IF(RANGE .GT. EPSILON) THEN
 THETA = ACOS(ZMV/RANGE)
 ELSE
 THETA = PI/2.0
 ENDIF
C
C Calculate limit of vertical scan in spherical coordinates i.e.
C from the Z axis downwards
 UPSCAN = (PI/2.0) - SMAX_THETA
 DOWNSCAN = (PI/2.0) + SMAX_THETA
C
C Check to see if the object bounding sphere is with the vertical scan
 IF(((THETA + DELTA_A).GT. UPSCAN) .OR.
 1 ((THETA - DELTA_A).LT.DOWNSCAN)) THEN
C
C Build an array of objects in the sensor field of view
C
 J = J + 1
 NUM_SEN = J
 RV(J) = RANGE
 VPHI(J) = PHI
 VTHETA(J) = THETA
 DELTA_ANGLE(J) = DELTA_A
 XCV(J) = XMV
 YCV(J) = YMV
 ZCV(J) = ZMV
 IOBJ_TYPE(J) = I_OBJ
 ID(J) = I
 ENDIF
 ENDIF

44

 ENDIF
 IF(J .EQ. LAST_J) THEN
 ENDIF
 LAST_J = J
C
 10 CONTINUE
 RETURN
 END
C
C

 SUBROUTINE SCAN (SMAX_PHI,SMAX_THETA,SDELTA_PHI,SDELTA_THETA,
 1 RMAX, NUM_SEN, XCV,YCV,ZCV,IOBJ_TYPE,ID,RV,VPHI,
 1 VTHETA,XCI,YCI,ZCI,NPOLY, XT,YT,ZT,NUM_SURF,
 1 NUM_CORN,INDEX_CORN,DELTA_ANGLE,R_BOUND,E_PSI,
 1 E_THETA,E_PHI,XV,YV,ZV,A,
 1 SCAN_PHI,SCAN_THETA,SCAN_RANGE)

C
 dimension NPOLY(10)
C
C Surfaces in object types. # surfaces, # corners in surface, corner indexes
 DIMENSION NUM_SURF(10), NUM_CORN(10,10), INDEX_CORN(10,10,8)
C
 dimension IOBJ_TYPE(200),ID(200)
C
C
C
 double precision SMAX_PHI,SMAX_THETA,SDELTA_PHI,RMAX,
 & SDELTA_THETA,XT(10,18),YT(10,18),
 & ZT(10,18),XCI(200),YCI(200),ZCI(200),
 & R_Bound(200),E_PSI(200),E_THETA(200),
 & E_PHI(200),XCV(200),YCV(200),
 & ZCV(200),RV(200),VPHI(200),VTHETA(200),
 & DELTA_ANGLE(200),A(3,3),B(3,3),
 & C(200,3,3),SCAN_RANGE(40,40),
 & SCAN_PHI(40),SCAN_THETA(40),PI,EPSILON,
 & THETA,PHI,RANGE,XV,YV,ZV
C
 DATA PI /3.1415926545/
 DATA EPSILON /0.000000001/
C
 NUM_PHI = INT(SMAX_PHI/SDELTA_PHI)*2 + 1
 NUM_THETA = INT(SMAX_THETA/SDELTA_THETA)*2 + 1
C
C Initialize all the range along all scan ray to the sensor max
 DO 410 I2 = 1, NUM_THETA
 DO 510 J2 = 1, NUM_PHI
 SCAN_RANGE(I2,J2) = RMAX
 510 CONTINUE
 410 CONTINUE

45

C
C Vertical scan
 THETA =(PI/2.0)-1.0*(SMAX_THETA + SDELTA_THETA)
 DO 100 I = 1, NUM_THETA
 THETA = THETA + SDELTA_THETA
C
C Horizontal scan
 PHI = -1.0*(SMAX_PHI + SDELTA_PHI)
 DO 200 J = 1, NUM_PHI
 PHI = PHI + SDELTA_PHI
C
C Check object whose bounding sphere is with the field of view
C
 DO 300 K = 1, NUM_SEN
C
 IF((THETA .LT. (VTHETA(K) + DELTA_ANGLE(K))).AND.
 1 (THETA .GT. (VTHETA(K) - DELTA_ANGLE(K))) .AND.
 1 (PHI .LT. (VPHI(K) + DELTA_ANGLE(K))).AND.
 1 (PHI .GT. (VPHI(K) - DELTA_ANGLE(K)))) THEN
C
C Ray hits bounding sphere
 I_OBJ = IOBJ_TYPE(K)
 ID2 = ID(K)
C
 CALL SCAN_SURF(RMAX, PHI, THETA, XCI(ID2), YCI(ID2),
 1 ZCV(ID2), I_OBJ,XV,YV,ZV,E_PSI(ID2),
 1 E_THETA(ID2),E_PHI(ID2), NUM_SURF,
 1 NUM_CORN,INDEX_CORN,NPOLY(I_OBJ),
 1 XT,YT,ZT,A,RANGE)
C
 IF(RANGE .LT. SCAN_RANGE(I,J)) THEN
C
 SCAN_THETA(I) = THETA
 SCAN_PHI(J) = PHI
 SCAN_RANGE(I,J) = Range
C
 ENDIF
C
 ELSE
C
C The Kth Scan ray miss all objects. Set range for the ray to max
sensor range
 SCAN_THETA(I) = THETA
 SCAN_PHI(J) = PHI
C
 ENDIF
 300 CONTINUE
 200 CONTINUE
 100 CONTINUE
C
 RETURN
 END
C
C
 SUBROUTINE SCAN_SURF(RMAX,SCAN_PHI,SCAN_THETA,XC,YC,
 1 ZC, I, XV,YV,ZV,
 1 PSI_E,THETA_E,PHI_E,

46

 1 NUM_SURF,NUM_CORN,INDEX_CORN,
 1 N_POLY,XT,YT,ZT,A,RANGE)
C
C
C
C Surfaces in object types. # surfaces, # corners in surface, corner
indexes
 DIMENSION NUM_SURF(10), NUM_CORN(10,10), INDEX_CORN(10,10,8)
C
C
 double precision XT(10,18),YT(10,18),ZT(10,18),XCV(18),
 & YCV(18),ZCV(18),A(3,3),B(3,3),E_PSI(200),
 & E_THETA(200),E_PHI(200),PI,EPSILON,RMAX,
 & SCAN_PHI,SCAN_THETA,XC,YC,ZC,XV,YV,ZV,
 & PSI_E,THETA_E,PHI_E,RANGE,XCR,YCR,ZCR,
 & CX,CY,CZ,PHI_MIN,PHI_MAX,THETA_MIN,
 & THETA_MAX,PHI,THETA,SURF_RANGE
C
 DATA PI /3.1415926545/
 DATA EPSILON /0.000000001/

C
C Calculate transformation matrix from object centered to inertial
coordinates
 CALL BRYANT_MATRIX(PSI_E, THETA_E, PHI_E, B)

C
C Transforming the corner points to vehicle Cartesian and vehicle polar
 DO 100 J1 = 1,N_POLY
C
C Reoriented corner point in object centered coordinates
C
C
 CALL TRANFORMER (B,XT(I,J1),YT(I,J1),ZT(I,J1),
 1 0.0D0,0.0D0,0.0D0,
 1 XCR,YCR,ZCR)
C
C Translate corner point to new location in initerial coordinates system
 CX = XCR + XC
 CY = YCR + YC
 CZ = ZCR + ZC
C
C Transforming the corner points from initial to vehicle Cartesian
 CALL TRANFORMER (A,CX,CY,CZ,
 1 XV,YV,ZV,
 1 XCV(J1),YCV(J1),ZCV(J1))
C
 100 CONTINUE
C Checking each surface to see if the ray passes through it
 RANGE = RMAX
C
 DO 200 J = 1, NUM_SURF(I)
C
 PHI_MIN = PI
 PHI_MAX = -1.0*PI
 THETA_MIN = PI
 THETA_MAX = 0.0

47

C
 DO 300 K = 1, NUM_CORN(I,J)
C Compute the range to the Kth corner of the Jth surface of the Ith object
 L = INDEX_CORN(I,J,K)
C
C Compute the yaw angle measure in the XY plan counter clockwise from X
 IF(XCV(L) .GE. 0.0) THEN
 PHI = ASIN(YCV(L)/(SQRT(XCV(L)**2 + YCV(L)**2)))
 ELSE
 IF(YCV(L) .GE. 0.0) THEN
 PHI = PI - ASIN(YCV(L)/(SQRT(XCV(L)**2
 1 + YCV(L)**2)))
 ELSE
 PHI = -1.0*(PI) - ASIN(YCV(L)/
 1 (SQRT(XCV(L)**2 + YCV(L)**2)))
 ENDIF
 ENDIF
C
C Check for max and min horizontal angle
 IF(PHI .LT. PHI_MIN) THEN
 PHI_MIN = PHI
 ENDIF
 IF(PHI .GT. PHI_MAX) THEN
 PHI_MAX = PHI
 ENDIF
C
C Compute the pitch angle measure in the transformed XZ plane from Z
clockwise
C (the XY plan is at 90 degrees)
C
 THETA =(PI/2)- ASIN(ZCV(L)/(SQRT(XCV(L)**2 + YCV(L)**2 +
 1 ZCV(L)**2)))
C
C Check for max and min horizontal angle
 IF(THETA .LT. THETA_MIN) THEN
 THETA_MIN = THETA
 ENDIF
C
 IF(THETA .GT. THETA_MAX) THEN
 THETA_MAX = THETA
 ENDIF
C
 300 CONTINUE
C
 IF ((SCAN_PHI .LT. PHI_MAX) .AND. (SCAN_PHI. GT. PHI_MIN)
 1 .AND. (SCAN_THETA .LT. THETA_MAX) .AND.
 1 (SCAN_THETA. GT. THETA_MIN)) THEN
C
C Compute the intersection of the scan ray with the surface
C
 CALL RAY_INTERSECT(RMAX, SCAN_THETA, SCAN_PHI, I, J,
 1 NUM_CORN, INDEX_CORN, XCV, YCV, ZCV,
 1 SURF_RANGE)
C
 IF (SURF_RANGE .LT. RANGE) THEN
 RANGE = SURF_RANGE
 ENDIF

48

C
 ENDIF
 200 CONTINUE
C
 RETURN
 END
C

 SUBROUTINE RAY_INTERSECT(RMAX, SCAN_THETA, SCAN_PHI, I, J,
 1 NUM_CORN, INDEX_CORN, XCV, YCV, ZCV,
 1 RANGE)
C
C Surfaces in object types. # surfaces, # corners in surface, corner
indexes
 DIMENSION NUM_SURF(10), NUM_CORN(10,10), INDEX_CORN(10,10,8)
C
C
 double precision XCV(18),YCV(18),ZCV(18),EPSILON,RMAX,
 & SCAN_THETA,SCAN_PHI,RANGE,A1,A2,A3,B1,
 & B2,B3,C1,C2,C3,DV,A,B,C,DP,XUSR,YUSR,
 & ZUSR,COS_PSI,DSR,XSR,YSR,ZSR,XSUM,YSUM,
 & ZSUM,XSC,YSC,ZSC,AA,AB,AC,U0,V0,U1,V1,
 & U2,V2,D0,D1,D2,ALPHA,BETA,ABSUM
 LOGICAL FOUND

 DATA EPSILON /0.000000001/
C
 K0 = INDEX_CORN(I,J,1)
 K1 = INDEX_CORN(I,J,2)
 K3 = INDEX_CORN(I,J,NUM_CORN(I,J))
C
C Define the vector that make up the edges of the surface
 A1 = XCV(K1) - XCV(K0)
 A2 = YCV(K1) - YCV(K0)
 A3 = ZCV(K1) - ZCV(K0)
C
 B1 = XCV(K3) - XCV(K0)
 B2 = YCV(K3) - YCV(K0)
 B3 = ZCV(K3) - ZCV(K0)
C
C Defining the vector cross product. Vector will be normal to the surface
 C1 = A2*B3 - A3*B2
 C2 = A3*B1 - A1*B3
 C3 = A1*B2 - A2*B1
C
C Calculate the length of the vector

 DV = SQRT(C1**2.0 + C2**2.0 + C3**2.0)
C
C Elements of the unit normal vector to the plan of the surface
 A = C1/DV

49

 B = C2/DV
 C = C3/DV
C Calculating the distance from the coordinate center (vehicle center) to
the
C plane containing the surface.
 DP = ABS(A*XCV(K1) + B*YCV(K1) + C*ZCV(K1))
C
C Calculating the elements of a unit vector parallel with the scan ray
 XUSR = SIN(SCAN_THETA)*COS(SCAN_PHI)
 YUSR = SIN(SCAN_THETA)*SIN(SCAN_PHI)
 ZUSR = COS(SCAN_THETA)
C
C For unit vectors starting at the origin the direction cosines are equal
C to the elements of the vector. Using the direction cosines, the solid
C angle between the surface normal and the scan ray is the following
 COS_PSI = ABS((A*XUSR + B*YUSR + C*ZUSR))
C
C Distance from the vehicle to the plane containing the surface along
C the scan ray
 IF(COS_PSI .GT. EPSILON) THEN
 DSR = DP/COS_PSI
 ELSE
 DSR = RMAX
 ENDIF
C
C Point at which the scan ray intersect the plane containing the surface
 XSR = DSR*XUSR
 YSR = DSR*YUSR
 ZSR = DSR*ZUSR
C
C Finding the center of the surface
 XSUM = 0.0
 YSUM = 0.0
 ZSUM = 0.0
 DO 100 K = 1, NUM_CORN(I,J)
 L = INDEX_CORN(I,J,K)
 XSUM = XCV(L) + XSUM
 YSUM = YCV(L) + YSUM
 ZSUM = ZCV(L) + ZSUM
 100 CONTINUE
 XSC = XSUM/NUM_CORN(I,J)
 YSC = YSUM/NUM_CORN(I,J)
 ZSC = ZSUM/NUM_CORN(I,J)
C
C Divide the surface in triangles. Each triangle contains two corner points
C and the center point. Check each triangle to see if the point where the
C scan ray contacts the plane containing the surface is inside.
C
C Check each triangle
C
 FOUND = .FALSE.
 DO 200 K = 1, NUM_CORN(I,J)
 L = INDEX_CORN(I,J,K)
C
 KP1 = K + 1
 IF(KP1 .GT. NUM_CORN(I,J)) THEN
 KP1 = 1

50

 ENDIF
 M = INDEX_CORN(I,J,KP1)
C
 AA = ABS(A)
 AB = ABS(B)
 AC = ABS(C)
C
 IF ((AC .GE. AA) .AND. (AC .GE. AB)) THEN
 U0 = XSR - XSC
 V0 = YSR - YSC
 U1 = XCV(L) - XSC
 V1 = YCV(L) - YSC
 U2 = XCV(M) - XSC
 V2 = YCV(M) - YSC
C
 ELSE IF((AB .GE. AA) .AND. (AB .GE. AC)) THEN
 U0 = XSR - XSC
 V0 = ZSR - ZSC
 U1 = XCV(L) - XSC
 V1 = ZCV(L) - ZSC
 U2 = XCV(M) - XSC
 V2 = ZCV(M) - ZSC
C
 ELSE
 U0 = YSR - YSC
 V0 = ZSR - ZSC
 U1 = YCV(L) - YSC
 V1 = ZCV(L) - ZSC
 U2 = YCV(M) - YSC
 V2 = ZCV(M) - ZSC
C
 ENDIF
C
 D0 = U1*V2 - U2*V1
 D1 = U0*V2 - U2*V0
 D2 = U1*V0 - U0*V1
C
 ALPHA = D1/D0
 BETA = D2/D0
 ABSUM = ALPHA + BETA
C
 IF((ALPHA .GE. 0.0) .AND. (BETA .GE. 0.0) .AND.
 1 (ABSUM .LE. 1.0)) THEN
C
 FOUND = .TRUE.
C
 ENDIF
C
 200 CONTINUE
C
 IF(FOUND) THEN
 RANGE = DSR
 ELSE
 RANGE = RMAX
 ENDIF
C
C

51

 RETURN
 END

**
**

C
 SUBROUTINE Human_Driver (NPOWER,RMAX,SMAX_PHI,
 1 SMAX_THETA,SDELTA_PHI,
 & SDELTA_THETA,
 & X_Sen, Y_Sen, Z_Sen,
 & Psi_Sen,Theta_Sen,Phi_Sen)
C
 double precision RMAX,SMAX_PHI,SMAX_THETA,SDELTA_PHI,
 & SDELTA_THETA,GRAV,TICYCL,TSS,DMAX,XP,
 & YP,TAUMEM,TFF,RM,A,B,RI,PSIO,TLAST,
 & DFWLST,TILAST,DMEM,XT,YT,
 & CAF,CAR,WHBS,WF,WR,U,X_Sen,
 & Y_Sen, Z_Sen,Psi_Sen,Theta_Sen,Phi_Sen
C
C---COMMON blocks--
C
 COMMON /DRVST1/ GRAV, TICYCL, TSS, DMAX, XP(100), YP(100), TAUMEM,
 1 TFF, RM, A, B, RI, PSIO, NTF, NP, TLAST, DFWLST, TILAST,
 2 DMEM(1000,2), XT(100), YT(100)
 SAVE/DRVST1/
 COMMON /DRIV/ CAF, CAR, WHBS, WF, WR, U
 SAVE/DRIV/
 COMMON /INOUT/ R, W
 SAVE/INOUT/
C
C---COMMON Variables---
C R.....Driver Model Input I/O unit ("DMINPUT.INP")
C W.....Driver Model Output I/O unit ("DMOUTPUT.OUT")
C
C---DRIV.BLK common block variables
C
C CAF...total cornering stiffness of tires on left front susp (lb/rad)
C CAR...total cornering stiffness of tires on left rear susp (lb/rad)
C WHBS..wheelbase of vehicle (center-line of front & rear susp) (ft)
C WF....static load on front suspension (lb)
C WR....static load on rear suspension (lb)
C U.....initial velocity (ft/sec)
C
C---DRVST1.BLK common block variables------------------------------------
C23456789012345678901234567890123456789012345678901234567890123456789012
C GRAV.....gravitational constant
C TICYCL...driver model sample time (sec)
C TSS......minimum preview time (sec)
C DMAX.....upper bound on front wheel angle steer (rad)
C XP, YP...x-y path coords(SAE) wrt inertial coords (input) (ft)
C TAUMEM...driver transport time dealy (input parameter) (sec)
C TFF......driver model preview time (input parameter) (sec)
C RM.......vehicle mass (slug)
C A........distance from c.g. to front suspension center-line (ft)
C B........distance from c.g. to rear suspension center-line (ft)

52

C RI.......total vehicle yaw inertia (slug-ft)
C PSIO.....current yaw angle reference value (rad)
C NTF......number of points in the preview time interval
C NP.......number of points in the x-y trajectory table
C TLAST....last time driver model calculated a steer value (sec)
C DFWLAST..last value of steer calculated by driver model (rad)
C TILAST...last sample time driver model calculated a steer value (sec)
C DMEM.....2-dim array (time & steer history) used in delay calculat'n
C XT, YT...transformation of XP,YP in vehicle body axes (ft)
C
C---Local variables---
C
 CHARACTER*80 COMMENT
C
C Set Pi
 DATA PI /3.1416/
C Set Acceleration of gravity (ft/sec**2)
 DATA GRAV /32.16666/
C Set driver model sample time
C DATA TICYCL /0.000001/
 data ticycl /1.0D-6/
C Set minimum driver model preview time
 DATA TSS /0.0D0/
C Set upper bound on front wheel steering angle
C
C
 DMAX = 0.2
C
C
 OPEN(UNIT=3,FILE='Human_Driver.txt')
C
 REWIND 3
C
C
C
 READ(3,*) COMMENT
C
 READ(3,*) RMAX,ACCR, SMAX_PHI, SMAX_THETA
C
C
C Convert to ft
 RMAX = RMAX/0.3048
C
C Convert to radians
 SMAX_PHI = SMAX_PHI*(PI/180.)
 SMAX_THETA = SMAX_THETA*(PI/180.)
C
 READ(3,*) COMMENT
C
 READ(3,*) SDELTA_PHI, SDELTA_THETA

 SDELTA_PHI = SDELTA_PHI*(PI/180.)
 SDELTA_THETA = SDELTA_THETA*(PI/180.)
C
 READ(3,*) COMMENT
C
 READ(3,*) NPOWER

53

C
C
 READ(3,*) COMMENT
C
 READ(3,*) X_Sen, Y_Sen, Z_Sen
C
 READ(3,*) COMMENT
C
 READ(3,*) Psi_Sen,Theta_Sen,Phi_Sen
C
 Psi_Sen = Psi_Sen*(PI/180.)
 Theta_Sen = Theta_Sen*(PI/180.)
 Phi_Sen = Phi_Sen*(PI/180.)
C
 DO 90 I = 1, 1000
 DMEM(I,1) = 0.
 DMEM(I,2) = -1.
 90 CONTINUE
C
 RETURN
 END
C

C

**
**

 SUBROUTINE HUMAN_STEERING(T,Tdelta,Y,DFW,DFWNOW,
 & XSTAR,YSTAR)
C
 double precision T,Y(5),DFW,DFWNOW,XSTAR,YSTAR,GRAV,TICYCL,
 & TSS,DMAX,XP,YP,TAUMEM,TFF,RM,A,B,RI,PSI0,
 & TLAST,DFWLST,TILAST,DMEM,XT,YT,AAA,BBB,
 & CCC,DDD,RATIO,Tdelta
C
 COMMON /DRVST1/ GRAV,TICYCL,TSS,DMAX,XP(100),YP(100),TAUMEM,
 1 TFF,RM,A,B,RI,PSI0,NTF,NP,TLAST,DFWLST,TILAST,
 2 DMEM(1000,2), XT(100), YT(100)
 SAVE/DRVST1/
C
C
 COMMON /VEHTYP/ AAA, BBB, CCC, DDD, RATIO
 SAVE/VEHTYP/
C
 LOGICAL FIRST
 CHARACTER*80 COMMENT
C
 DATA FIRST /.TRUE./
C
 IF(FIRST) THEN
 OPEN(UNIT=5,FILE='Human_Steering.txt')
C
 REWIND 5

54

C
 READ(5,*) COMMENT
C
 READ(5,*) TAUMEM
C
 READ(5,*) COMMENT
C
 READ(5,*) TFF
C
 READ(5,*) COMMENT
C
 READ(5,*) TSS
C
 READ(5,*) COMMENT
C
 READ(5,*) DFWNOW
C
 READ(5,*) COMMENT
C
 READ(5,*) AAA
C
 READ(5,*) COMMENT
C
 READ(5,*) BBB
C
 READ(5,*) COMMENT
C
 READ(5,*) CCC
C
 READ(5,*) COMMENT
C
 READ(5,*) DDD
C
 READ(5,*) COMMENT
C
 READ(5,*) RATIO
C
 PRINT 75, TAUMEM, TFF
 75 FORMAT (' ', /, ' ', T20, 'DRIVER TRANSPORT LAG (SEC) :', T60,
 1 F4.2, /, ' ', T20, 'END OF PREVIEW INTERVAL (SEC) :', T60,
 2 F4.2/)
C
 NTF = 10
 TLAST = 0.0D0
 DFWLAST = 0.0D0
 TILAST = 0.0D0
 DFW = 0.0D0
 FIRST = .FALSE.
 ENDIF
C
 DO 10 I = 1, 5
C
 write(38,*) "I = ",I," Y = ",Y(I)
C
 10 CONTINUE
C
C

55

 CALL NEWDRIVER(T, Y, DFW, DFWNOW,XSTAR,YSTAR)
C
 DFWNOW = DFW
 RETURN
 END

**
**
C
C***
C
C *** Closed-Loop Steer Calculation Subroutine ***
C
C NEWDRIVER: Computes closed-loop steering control during the simulation.
C NEWDRIVER is a modification of the original DRIVER
C subroutine described below.
C
C

C-----------Author and Modification Section-----------------------------
C
C Author: C. C. MacAdam
C
C Date written: 01/01/88
C
C Written on:
C
C Modifications:
C
C---
C
C-----------Algorithm Description---------------------------------------
C
C Purpose and use:
C
C Error conditions:
C
C References:
C
C (1) MacAdam, C. C. "Development of Driver/Vehicle Steering
C Interaction Models for Dynamic Analysis," Final
C Technical Report, U.S. Army Tank Automotive Command
C Contract No. DAAE07-85-C-R069, The University of
C Michigan Transportation Research Inst. December 1, 1988
C
C (2) MacAdam, C. C. "Application of an Optimal Preview Control
C for Simulation of Closed-Loop Automobile Driving,"
C IEEE Transactions on Systems, Man, and Cybernetics,
C Vol. 11, June 1981.
C
C (3) MacAdam, C. C. "An Optimal Preview Control for Linear
C Systems," Journal of Dynamic Systems, Measurement,
C and Control, ASME, Vol. 102, No. 3, September 1980.
C
C
C Machine dependencies: none

56

C
C Called by: STEERING.f
C
C---
C
 SUBROUTINE NEWDRIVER(X, Y, DFW, DFWNOW,XSTAR,YSTAR)
C
C----------------Variable Descriptions----------------------------------
C
C---Arguments passed:
C
C -> X......time in the simulation (sec)
C -> Y......current driver model state vector obtained from DADS.
C Driver model state vector of dimension 5 comprised of the
C following physical quantities: (1) inertial lateral
C displacement (ft), (2) lateral veloc in body frame (ft/s),
C (3) yaw rate global (rad/s), (4) SAE global yaw angle (rad),
C (5) global forward displacement (ft).
C
C <- DFW....closed-loop steering control returned to DADS (returned)
C -> DFWNOW.current steering angle (average) of front wheels, passed
C in after effects of roll-steer, compliance, etc.
C XSTAR - Previewed or desired longitudinal position
C YSTAR - Previewed or desired lateral position
C
C --
 INTEGER R, W
C
 double precision Y(5),YC(5),DUMV11(4),DUMV1(4),VECM(4),
 & DUMM1(4,4),DUMM2(4,4),X,DFW,DFWNOW,
 & XSTAR,YSTAR,GRAV,TICYCL,TSS,DMAX,
 & XP,YP,TAUMEM,TFF,RM,A,B,RI,PSI0,TLAST,
 & DFWLST,TILAST,DMEM,XT,YT,CAF,CAR,WHBS,
 & WF,WR,U,TTT,TTT1,G,AAA,BBB,CCC,
 & DDD,RATIO,CCAF1,CCAF2,CCAR1,CCAR2,
 & FFZL1,FFZL2,FFZL3,FFZL4,DMVELC,PI,
 & ANGLE,DELTA_ANGLE,XV,YV,T,EPSI,Y0,X0,
 & EPSY2,TSUM,SSUM,CAFTEM,CARTEM,TJI,XCAR,
 & YPATH,S1,EP,T1,TTAB,DFWLAST
C
C---COMMON blocks---
C
 COMMON /DRVST1/ GRAV, TICYCL, TSS, DMAX, XP(100), YP(100), TAUMEM,
 1 TFF, RM, A, B, RI, PSI0, NTF, NP, TLAST, DFWLST, TILAST,
 2 DMEM(1000,2), XT(100), YT(100)
 SAVE/DRVST1/
C
 COMMON /DRIV/ CAF, CAR, WHBS, WF, WR, U
 SAVE/DRIV/
C
 COMMON /INOUT/ R, W
 SAVE/INOUT/
C
 COMMON /TRSSTR/ TTT(4,4,10), TTT1(4,4,10), G(4)
 SAVE /TRSSTR/
C
 COMMON /VEHTYP/ AAA, BBB, CCC, DDD, RATIO

57

 SAVE/VEHTYP/
C
C Get Tire Cornering Stiffnesses, Vertical Tire Loads, and Speed
C from DADS Through Common Block DMTIR
C
 COMMON/DMTIR/CCAF1,CCAF2,CCAR1,CCAR2,FFZL1,FFZL2,FFZL3,FFZL4,
 + DMVELC
C
C
C---COMMON Variables--
C R.....Driver Model Input I/O unit ("DMINPUT.INP")
C W.....Driver Model Output I/O unit ("DMOUTPUT.OUT")
C
C---DRIV.BLK common block variables-------------------------------------
C
C Initial Values from Time Zero:
C
C CAF...total cornering stiffness of tires on left front susp (lb/rad)
C CAR...total cornering stiffness of tires on left rear susp (lb/rad)
C WHBS..wheelbase of vehicle (center-line of front & rear susp) (ft)
C WF....static load on front suspension (lb)
C WR....static load on rear suspension (lb)
C U.....initial velocity (ft/sec)
C
C---DMTIR.BLK common block variables------------------------------------
C
C Updates during simulation run:
C
C CCAF1...Left front tire cornering stiffness from DADS during run
C CCAF2...Right front tire cornering stiffness from DADS during run
C CCAR1...Left rear tire cornering stiffness from DADS during run
C CCAR2...Right rear tire cornering stiffness from DADS during run
C FFZL1...Left front tire vertical load from DADS during run
C FFZL2...Right front tire vertical load from DADS during run
C FFZL3...Left rear tire vertical load from DADS during run
C FFZL4...Right rear tire vertical load from DADS during run
C DMVELC..Forward speed from DADS
C
C---DRVST1.BLK common block variables------------------------------------
C
C GRAV....gravitational constant
C TICYCL..driver model sample time (sec)
C TSS.....minimum preview time (sec)
C DMAX....upper bound on front wheel angle steer (rad)
C XP,YP...x-y path coords(SAE) wrt inertial coords (input) (ft)
C TAUMEM..driver transport time dealy (input parameter) (sec)
C TFF.....driver model preview time (input parameter) (sec)
C RM......vehicle mass (slug)
C A.......distance from c.g. to front suspension center-line (ft)
C B.......distance from c.g. to rear suspension center-line (ft)
C RI......total vehicle yaw inertia (slug-ft)
C PSIO....current yaw angle reference value (rad)
C NTF.....number of points in the preview time interval
C NP......number of points in the x-y trajectory table
C TLAST...last time driver model calculated a steer value (sec)
C DFWLST..last value of steer calculated by driver model (rad)
C TILAST..last sample time driver model calculated a steer value (sec)

58

C DMEM....2-dim array (time & steer history) used in a delay calculat'n
C XT,YT...transformation of XP,YP in vehicle body axes (ft)
C
C---TRSSTR.BLK common block variables------------------------------------
C
C TTT.....transition matrix at 10 discrete points in preview interval
C TTT1....integral of trans matrix wrt preview time
C G.......vector of control gain coefficients
C
C---Local variables--
C
C YC......local (body-axis based) copy of state vector Y
C VECM....observer vector - lateral displacement from state vector
C DUMV1...work vector
C DUMV11..work vector
C DUMM1...work matrix
C DUMM2...work matrix
C T.......time in the simulation (sec)
C EPSI....yaw angle between body axis and current index value, PSIO
C PSIO....current nominal value of yaw angle used for linearization
C NP......number of points in x-y path table
C XP,YP...x-y inertial path table (input) (ft)
C XT,YT...x-y path table transformed to body axis (PSIO) system (ft)
C EPSY2...cumulative preview path error squared
C EPSI....mean squared value of cumulative preview path error
C TSUM....scalar work quantity
C SSUM....scalar work quantity
C DFWLAST.steering control from last calculation (rad)
C TJI.....preview time ahead from present time value (sec)
C I,J,K...integer counters
C XCAR....preview distance ahead in feet (ft)
C XO......present forward position of vehicle c.g. (ft)
C TTAB....current time less the driver delay, TAUMEM. Used to access
C the delayed driver response stored in DMEM array. (sec)
C S1......scalar work quantity
C T1......scalar work quantity
C EP......previewed path error (ft)
C
C---Functions and Subroutines---
C
 EXTERNAL GMPRD
C
C---
C
C---------Process Block---
C
C
 DATA VECM /1.0D0,0.0D0,0.0D0,0.0D0/
 DATA PI /3.141592/
 DATA ANGLE/1.57079/
 DATA DELTA_ANGLE/0.00628319/
C
C
 NP=1
 XP(1) = XSTAR - XV
 YP(1)=YSTAR - YV
C

59

 T = X
C
 EPSI = ABS(Y(4) - PSIO)
C
 DO 10 I = 1, 5
C
 10 YC(I) = Y(I)
C
C Update Coordinate Transformation
C
 PSIO = Y(4)
 DO 20 J = 1, NP
 XT(J) = XP(J) * COS(PSIO) + YP(J) * SIN(PSIO)
 20 YT(J) = -XP(J) * SIN(PSIO) + YP(J) * COS(PSIO)
C
 30 Y0 = -Y(5) * SIN(PSIO) + Y(1) * COS(PSIO)
 X0 = Y(5) * COS(PSIO) + Y(1) * SIN(PSIO)
 YC(1) = Y0
 YC(4) = Y(4) - PSIO
 EPSY2 = 0.0D0
 TSUM = 0.0D0
 SSUM = 0.0D0
C
C SET DFW EQUAL TO THE PREVIOUS STEERING COMMAND
C
 DFW = DFWLST
C
C Return if time from last calculation less than sample interval
C
 IF (T - TILAST .LE. TICYCL) RETURN
C if(t-tilast.le.ticycl)then
C return
C endif
C
C THE NEXT 6 LINES OF EXECUTABLE CODE MAY BE COMMENTED OUT TO BYPASS
C CONTINUOUS UPDATING OF THE TRANSITION MATRICES, IF NOT REQUIRED.
C SEE SECTION 5.8 OF REFERENCE 1.
C
C UPDATE TIRE CORNERING STIFFNESSES AND VEHICLE VELOCITY
C AND RECALCULATE TRANSITION MATRIX:
C
C
 CAFTEM = (CCAF1*FFZL1+CCAF2*FFZL2) / (FFZL1+FFZL2)
 CARTEM = (CCAR1*FFZL3+CCAR2*FFZL4) / (FFZL3+FFZL4)
 CAF = CAFTEM
 CAR = CARTEM
C
C
C UPDATE TRANSITION MATRICES
C
C
 CALL TRANS
C
C
C LOOP TO CALCULATE OPTIMAL PREVIEW CONTROL PER REFERENCES 2 & 3:
C (NTF POINTS WITHIN THE PREVIEW INTERVAL)
C

60

 DO 50 I = 1, NTF
 TJI = (TFF - TSS) / NTF * I + TSS
 DO 40 J = 1, 4
 DO 40 K = 1, 4
 DUMM1(J,K) = TTT1(J,K,I)
 DUMM2(J,K) = TTT(J,K,I)
 40 CONTINUE
C
 CALL GMPRD(VECM, DUMM1, DUMV11, 1, 4, 4)
 CALL GMPRD(VECM, DUMM2, DUMV1, 1, 4, 4)
 CALL GMPRD(DUMV1, YC, T1, 1, 4, 1)
C
C Get observed path input, YPATH, within preview interval at XCAR ft:
C
 XCAR = X0 + U * TJI
C
 YPATH=YT(1)
C
 CALL GMPRD(DUMV11, G, S1, 1, 4, 1)
C
C EP is the previewed path error at this preview point
C
 EP = T1 + S1 * DFWNOW - YPATH
C
C
 TSUM = TSUM + EP * S1
 SSUM = SSUM + S1 * S1
C
C Cumulative preview error calculation (unrelated to control)
C
 EPSY2 = EPSY2 + EP * EP * (TFF - TSS) / NTF
C
 50 CONTINUE
C
C Cumulative preview error calculation (unrelated to control)
C
 EPSY2 = SQRT(EPSY2) / (TFF - TSS)
C
C Optimal value - no delay yet.
C
 DFW = -TSUM / SSUM + DFWNOW
C
C
C Maximum steer bound set at DMAX (arbitrary)
C
 If (ABS(DFW) .GT. DMAX) THEN
 IF (DFW .LT. 0.0) THEN
 DFW = -1.0*DMAX
 ELSE
 DFW = DMAX
 ENDIF
 ENDIF
C
C
C Store steer history and corresponding times in DMEM.
C Retrieve steer delayed by TAUMEM sec and return as
C delayed driver steer control, DFW.

61

C
 DO 60 J = 1, 2
 DO 60 I = 1, 999
 60 DMEM(1001 - I,J) = DMEM(1000 - I,J)
 DMEM(1,1) = DFW
 DMEM(1,2) = T
 TTAB = T - TAUMEM
C
 DO 70 I = 1, 999
C
 IF (DMEM(I + 1,2) .LE. TTAB .AND. DMEM(I,2) .GE. TTAB)
 1 GO TO 90
 70 CONTINUE
 WRITE (W,80)TAUMEM,DFW,X
 80 FORMAT ('0', '***** TAUMEM PROBABLY TOO LARGE *****',
 & /,3(1X,G12.6))
 CALL EXIT
 90 DFW = DMEM(I,1)
C
C If simulation time is less than human reaction time steering
C angle set to zero
 IF(TTAB .LT. 0.0) THEN
 DFW = 0.0D0
 ENDIF
C
C Save steer and time values for next calculation.
C
 DFWLST = DFW
 TLAST = X
 TILAST = X
C
 RETURN
 END

**
**

C
C***
C***
C
C *** Transition Matrix Calculation Subroutine ***
C
C
C TRANS: Computes transition matrix (and integral) of the linearized
C system, F, described in references. Result stored in common
C arrays TTT and TTT1 respectively. 10 pts per preview interval.
C
C-----------Author and Modification Section-----------------------------
C
C Author: C. C. MacAdam
C
C Date written: 01/01/88
C

62

C Written on:
C
C Modifications:
C
C---
C--------------Algorithm Description------------------------------------
C
C Purpose and use: Used by the driver model in predicting future states
C
C Error conditions:
C
C Machine dependencies: none
C
C Called by: DRIVGO
C
C---
C
 SUBROUTINE TRANS
C
C-------------Variable Descriptions-------------------------------------
C
C---Arguments passed: None
C
 INTEGER R, W
 double precision SV(4),SD(4),SVI(4),GRAV,TICYCL,TSS,DMAX,XP,YP,
 & TAUMEM,TFF,RM,A,B,RI,PSIO,TLAST,DFWLAST,TILAST,
 & DMEM,XT,YT,CAF,CAR,WHBS,WF,WR,U,TTT,TTT1,G,
 & AAA,BBB,CCC,DDD,RATIO,DELT,A1,B1,A2,B2,C1,C2,
 & ULAST,TIME
C
C---COMMON blocks---
C
 COMMON /DRVST1/ GRAV, TICYCL, TSS, DMAX, XP(100), YP(100), TAUMEM,
 1 TFF, RM, A, B, RI, PSIO, NTF, NP, TLAST, DFWLAST, TILAST,
 2 DMEM(1000,2), XT(100), YT(100)
 SAVE/DRVST1/
 COMMON /DRIV/ CAF, CAR, WHBS, WF, WR, U
 SAVE/DRIV/
 COMMON /INOUT/ R, W
 SAVE/INOUT/
 COMMON /TRSSTR/ TTT(4,4,10), TTT1(4,4,10), G(4)
 SAVE/TRSSTR/
C
C Control Coefficients A, B, C, D defined in section 5.5 of
C reference (1) and passed from DADS through common block VEHTYP
C (A = 1, C=1; B = D = k = 0 defines a conventional front steer
C vehicle, etc.)
C
 COMMON /VEHTYP/ AAA, BBB, CCC, DDD, RATIO
 SAVE/VEHTYP/
C
C---COMMON Variables---
C
C R.....Driver Model Input I/O unit ("DMINPUT.INP")
C W.....Driver Model Output I/O unit ("DMOUTPUT.OUT")
C
C---DRIV.BLK common block variables--------------------------------------

63

C
C CAF...total cornering stiffness of tires on left front susp (lb/rad)
C CAR...total cornering stiffness of tires on left rear susp (lb/rad)
C WHBS..wheelbase of vehicle (center-line of front & rear susp (ft)
C WF....static load on front suspension (lb)
C WR....static load on rear suspension (lb)
C U.....initial velocity (ft/sec)
C
C---DRVST1.BLK common block variables------------------------------------
C
C GRAV.....gravitational constant
C TICYCL...driver model sample time (sec)
C TSS......minimum preview time (sec)
C DMAX.....upper bound on front wheel angle steer (rad)
C XP,YP....x-y path coords(SAE) wrt inertial coords (input) (ft)
C TAUMEM...driver transport time dealy (input parameter) (sec)
C TFF......driver model preview time (input parameter) (sec)
C RM.......vehicle mass (slug)
C A........distance from c.g. to front suspension center-line (ft)
C B........distance from c.g. to rear suspension center-line (ft)
C RI.......total vehicle yaw inertia (slug-ft)
C PSIO.....current yaw angle reference value (rad)
C NTF......number of points in the preview time interval
C NP.......number of points in the x-y trajectory table
C TLAST....last time driver model calculated a steer value (sec)
C DFWLAST..last value of steer calculated by driver model (rad)
C TILAST...last sample time driver model calculated a steer value (sec)
C DMEM.....2-dim array (time & steer history) used in delay calculat'n
C XT,YT....transformation of XP,YP in vehicle body axes (ft)
C
C---TRSSTR.BLK common block variables-----------------------------------
C
C TTT....transition of matrix at 10 discrete points in preview interval
C TTT1...integral of trans matrix wrt preview time
C G......vector of control gain coefficients
C
C---VEHTYP common block variables---------------------------------------
C
C AAA....Control coefficient A defined in section 5.5 of ref (1)
C BBB....Control coefficient B defined in section 5.5 of ref (1)
C CCC....Control coefficient C defined in section 5.5 of ref (1)
C DDD....Control coefficient D defined in section 5.5 of ref (1)
C RATIO..rear steer / front steer ratio, k, defined in section 5.5
C
C---Local variables---
C
C DELT.....time step in local Euler integration (sec)
C A1.......lat accel coefficient of sideslip veloc in linearized system
C B1....... " yaw rate
C A2.......yaw accel " sideslip vel "
C B2....... " yaw rate
C C1.......steer control gain coefficient for lateral accel
C C2.......steer control gain coefficient for yaw moment
C ULAST....last value of forward velocity (ft/sec)
C NBEG.....integer startin counter value
C NEND1....integer ending counter value
C NENDV....integer ending counter value

64

C J........integer counter
C SV.......state vector: y,v,r,yaw,x (SAE)
C SV1......integral of state vector
C SD.......state vector derivative
C
C---Functions and subroutines--
C
C None
C
C--
C
C-------------Process Block--
C
C
 DELT = 0.01D0
 A1 = -2. * (CAF + CAR) / RM / U
 B1 = 2. * (CAR * B - CAF * A) / RM / U - U
 A2 = 2. * (CAR * B - CAF * A) / RI / U
 B2 = -2. * (CAR * B * B + CAF * A * A) / RI / U
 C1 = 2. * (CAF + RATIO * CAR) / RM * AAA + BBB / RM
 C2 = 2. * (A * CAF - RATIO * B * CAR) / RI * CCC + DDD / RI
 ULAST = U
 G(1) = 0.0D0
 G(2) = C1
 G(3) = C2
 G(4) = 0.0D0
C
 DO 70 J = 1, 4
C
 NBEG = TSS / DELT + 1
 NEND1 = (TFF + .001 - TSS) / NTF / DELT
 NENDV = NEND1
 DO 10 L = 1, 4
 SV(L) = 0.0D0
 SVI(L) = 0.0D0
 10 CONTINUE
 TIME = 0.0D0
C
C Initialize each state in turn to 1.0 and integrate.
C
C
 SV(J) = 1.0D0
 DO 60 I = 1, NTF
 DO 40 K = NBEG, NENDV
 SD(1) = SV(2) + U * SV(4)
 SD(2) = A1 * SV(2) + B1 * SV(3)
 SD(3) = A2 * SV(2) + B2 * SV(3)
 SD(4) = SV(3)
C
 DO 20 L = 1, 4
 SV(L) = SV(L) + SD(L) * DELT
 20 CONTINUE
C
 TIME = TIME + DELT
C
 DO 30 L = 1, 4
 SVI(L) = SVI(L) + SV(L) * DELT

65

 30 CONTINUE
C
 40 CONTINUE
C
C Store "impulse" responses in TTT columns, integral in TTT1.
C TTT is a NPT-point tabular transition matrix, TTT1 is its integral.
C (See references 2 & 3.)
C
 DO 50 L = 1, 4
 TTT(L,J,I) = SV(L)
 TTT1(L,J,I) = SVI(L)
 50 CONTINUE
C
 NBEG = NBEG + NEND1
 NENDV = NENDV + NEND1
C
 60 CONTINUE
C
 70 CONTINUE
C
 RETURN
 END
C**

C
C
 SUBROUTINE Interface_Steering (TIME,TDelta,loc_yd,x_veh,y_veh,
 & z_veh,Psi,Theta,Phi,UX,UY,UZ,r,q,
 & p,NW,ZLoadR,ZloadL,DFW)
C
 COMMON /DRVST1/ GRAV,TICYCL,TSS,DMAX,XP(100),YP(100),TAUMEM,
 1 TFF,RM,A,B,RI,PSIO,NTF,NP,TLAST,DFWLST,TILAST,
 2 DMEM(1000,2),XT(100),YT(100)
 COMMON /DRIV/ CAF, CAR, WHBS, WF, WR, U
 COMMON/DMTIR/CCAF1,CCAF2,CCAR1,CCAR2,FFZL1,FFZL2,FFZL3,FFZL4,
 + DMVELC
C
 SAVE/DRIVST1/
 SAVE/DRIV/
 SAVE/DMTIR/
C
 double precision RD(200),TH(200),Y(5),ZLoadR(2),
 & ZLoadL(2),SCAN_RANGE(40,40),
 & SCAN_PHI(40),SCAN_THETA(40),
 & TIME,TDelta,CAF,CAR,
 & RM,RI,A,B,
 & loc_yd,XV,YV,ZV,Psi,Theta,
 & Phi,UX,UY,UZ,r,q,p,DFW,
 & RMAX,SMAX_PHI,SMAX_THETA,
 & SDELTA_PHI,SDELTA_THETA,THETRAD,
 & DELTHRAD,PSIRAD,XSTAR,YSTAR,DFWNOW,

66

 & U,PI,GRAV, TICYCL, TSS, DMAX,XP,
 & YP,TAUMEM,TFF,RM,PSIO,TLAST,DFWLST,
 & TILAST,DMEM,XT,YT,WHBS,WF,WR,CCAF1,
 & CCAF2,CCAR1,CCAR2,FFZL1,FFZL2,
 & FFZL3,FFZL4,DMVELC,DPsi,X_Sen, Y_Sen,
 & Z_Sen,Psi_Sen,Theta_Sen,Phi_Sen,
 & x_veh,y_veh,z_veh,xstprev
C
 integer NW,kmax,num_theta,k,j,npower,ntf,np
C
 LOGICAL FIRST,flag
C

 DATA FIRST,flag /.TRUE.,.true./
 DATA PI /3.1416/
C
C Assignments below necessary to avoid using dummy arguments
C in common block VEHCOORDS .
C
 xv=x_veh
 yv=y_veh
 zv=z_veh
C
 WF = zloadr(1) + zloadl(1)
 WR = zloadr(2) + zloadl(2)
 WHBS = a+b
 CCAF1 = caf/2.0
 CCAF2 = caf/2.0
 CCAR1 = car/2.0
 CCAR2 = car/2.0
 FFZL1 = zloadl(1)
 FFZL2 = zloadr(1)
 FFZL3 = zloadl(2)
 FFZL4 = zloadr(2)
 DMVELC = ux
 Dpsi = r
C
C
 IF(FIRST) THEN
C
C
 CALL Human_Driver (NPOWER,RMAX,SMAX_PHI,
 1 SMAX_THETA,SDELTA_PHI,
 & SDELTA_THETA,
 & X_Sen, Y_Sen, Z_Sen,
 & Psi_Sen,Theta_Sen,Phi_Sen)
C
 xstprev=xv
C
C
 ENDIF
C
C
CCC
CCCCCC
CCCCCC Load the Y vector with vehicle states from DADS. CCCCCCCCCCCCCCCCCC
CCCCCC CCCCCCCCCCCCCCCCCC

67

CCC
C
 y(1) = YV
 y(2) = loc_yd
 y(3) = r
 y(4) = psi
 y(5) = XV
C
C
 PSIRAD = Psi
 U = UX
C
C
C
 CALL Get_Obstacles (FIRST, TDelta, SMAX_PHI, SMAX_THETA,
 1 RMAX,SDELTA_PHI, SDELTA_THETA,
 1 XV, YV, ZV, Psi,Theta, Phi,
 1 SCAN_RANGE,SCAN_PHI,SCAN_THETA)
C
C
C Find the minimum range in the set of vertical scans. Reduce the
C 3D scan to a 2D scan
C
C
 NUM_THETA = INT(SMAX_THETA/SDELTA_THETA)*2 + 1
 KMAX = INT(SMAX_PHI/SDELTA_PHI)*2 + 1
C
 DO 700 K = 1, KMAX
 RD(K) = RMAX
 TH(K) = SCAN_PHI(K)
 DO 800 J = 1, NUM_THETA
C
 IF(SCAN_RANGE(J,K) .LE. RD(K)) THEN
 RD(K) = SCAN_RANGE(J,K)
 ENDIF
 800 CONTINUE
 700 CONTINUE
C
C Interfacing with the original obstacle avoidance subroutine
C
 THETRAD = SMAX_PHI
 DELTHRAD = SDELTA_PHI
 PSIRAD = Psi
C
C
 CALL Avoid_Obstacles (THETRAD, DELTHRAD, NPOWER, XV, YV, ZV,
 1 PSIRAD, KMAX, RD, TH, XSTAR, YSTAR)
C
C
C Human steering model
 CALL HUMAN_STEERING(TIME,Tdelta,Y,DFW,DFWNOW,
 & XSTAR,YSTAR)
C
 IF(FIRST) THEN
 WRITE(7,705)
 705 FORMAT(" TIME, XV, YV,",
 1" UX UY Psi",

68

 1" DPsi, DFW, XSTAR,",
 1" YSTAR")
 ENDIF
 FIRST = .FALSE.
C
C
 return
 END
C

C
C
C Subroutine CALCRS calculates RSTAR, the average value of the range array.
C
 SUBROUTINE CALCRS(IMAX,R,TH,THMAX,DELTH,RSTAR)
C
C -------------------VARIABLE DESCRIPTIONS------------------------------
C
C -------------------ARGUEMENTS PASSED----------------------------------
C
C IMAX - Number of sensor increments
C R - Range array from GENRAY
C TH - Theta array from GENRAY
C THMAX - Sensor half field of view
C DELTH - Sensor field of view increment
C RSTAR - Previewed range
C
C --
C
 double precision R(*),TH(*),THMAX,DELTH,RSTAR,
 & SUM
C
 SUM = 0.0
C
 DO 100 I=1,IMAX
 SUM = SUM + R(I)
 100 CONTINUE
C
 RSTAR = SUM/IMAX
C
 RETURN
 END
C

69

C
C
C Subroutine CALCTH calculates THSTAR, the WEIGHTED average of the
C range-theta array.
C
 SUBROUTINE CALCTH(IMAX,R,TH,THMAX,DELTH,NPOWER,THSTAR)
C
C -------------------VARIABLE DESCRIPTIONS------------------------------
C
C -------------------ARGUEMENTS PASSED----------------------------------
C
C IMAX - Number of sensor angle increments
C R - Range array from GENRAY
C TH - Theta array from GENRAY
C THMAX - Sensor half field of view
C DELTH - Sensor field of view increment
C NPOWER - Sensor power
C THSTAR - Weighted average of the range-theta array
C
C --
C
 double precision R(*),TH(*),THMAX,DELTH,THSTAR,
 & SUM1,SUM2
C
 SUM1 = 0.0
 SUM2 = 0.0
C
 DO 100 I=1,IMAX
 SUM1 = SUM1 + (R(I)**NPOWER)*TH(I)
 SUM2 = SUM2 + (R(I)**NPOWER)
 100 CONTINUE
C
 THSTAR = SUM1/SUM2
C
 RETURN
 END
C

**
**

C
C
C Subroutine CHECKRTH recalculates RSTAR if RSTAR is greater than the
C range to an obstacle's edge.
C
 SUBROUTINE CHECKRTH(IMAX,R,TH,RSTAR,THSTAR)
C
C -------------------VARIABLE DESCRIPTIONS------------------------------
C
C -------------------ARGUEMENTS PASSED----------------------------------
C

70

C IMAX - Number of sensor angle increments
C R - Range array from GENRAY
C TH - Theta array from GENRAY
C THSTAR - Sensor angle increment corresponding to RSTAR
C RSTAR - Maximum range within the sensor field of view
C --
C
C
 double precision R(200),TH(200),THSTAR,
 & A,RANGE,RSTAR
C
 A=RSTAR
C
C From the range-theta profile find the range at THSTAR
C
 DO 100 I=1,IMAX-1
 IF((THSTAR .GE. TH(I)) .AND. (THSTAR .LE. TH(I+1)))THEN
 RANGE=R(I)+((R(I+1)-R(I))/(TH(I+1)-TH(I)))*(THSTAR-TH(I))
 ENDIF
 100 CONTINUE
C
C
C IF RSTAR is greater than the range from the range-theta profile
C reduce RSTAR by 20%
C
C
 IF(A .GE. RANGE)THEN
 A=0.80*RANGE
 ENDIF
C
 RSTAR=A
C
 RETURN
 END

**
**

C============Algorithm Description======================================
C
C Purpose and use:
C This routine calculates terms associated with the user defined
C algebraic element.
C
C Error conditions: none
C
C Machine dependencies: none
C
C===

 SUBROUTINE FR3512 (TIME, ENS, FN35, IC, RC, NEL, IEVAL, IMODUL,
 & IBLOCK, IFN, ERRCOD, INFOF, UPDATI, SMPSTP,

71

 & A, IA, TOL)

C============Variable Descriptions======================================
C
C---Arguments passed--
C
C TIME.......Current simulation time.
C ENS........Vector of control variable values.
C FN35.......Vector used if there are algebraically related nodes.
C IC.........Array of control element integer data.
C RC.........Array of control element real data.
C NEL........Number of user algebraic elements in the model.
C IEVAL......Analysis status flag for controls (=1...6).
C IMODUL.....Control module currently being processed (=12).
C IBLOCK.....Number of the user algebraic element currently being
C processed. (=1...NEL)
C IFN........Used if the control system has algebraic loops in the
C path.
C ERRCOD.....Error code (zero represents no error).
C INFOF......File unit for the information file.
C UPDATI..... From Rev7 on this flag is no longer used. User should
C ignore this flag.
C SMPSTP..... From Rev7 on this flag is no longer used. User should
C ignore this flag.
C A..........Array of all real (double precision) data used in the
C analysis.
C IA.........Array of all integer data used in the analysis.
C TOL........If time - sample time is within this tolerance then
C this is a sample step.
C
 INTEGER NEL, IC(NEL,*), IEVAL, IMODUL, IBLOCK, IFN, ERRCOD,
 & INFOF, IA(0:1), GETNOD, INDXAR

 DOUBLE PRECISION ENS(*), FN35(*), RC(NEL,*), TIME, A(0:1)
 LOGICAL UPDATI, SMPSTP
 external GETNOD, INDXAR
C
C---COMMON blocks---
 common /vehcoords/ x_veh,y_veh,z_veh,x0,y0,z0
 save/vehcoords/
 save/vehspecs/
C
C---Local variables---
C
C INODn.....Input value of the n'th input node.
C OUTNOD....Value of the output node after calculations.
C IVALx.....Integer values passed in from the preprocessor for
C general use.
C VALx......Real values similar to IVALx
C
 DOUBLE PRECISION T, INOD1, INOD2, INOD3,INOD4, INOD5,
 & INOD6, INOD7, INOD8, OUTNOD, SRATE,
 & SMPLOW, SMPHGH, TLSMP, TSMP, VAL1, VAL2,
 & VAL3, TOL,xd,yd,zd,zw,zfr(2),zfl(2),roll,
 & pitch,yaw,crstfr(2),crstfl(2),mass5,Izz5,
 & cgfs,cgrs,pubts,dadsts,cgX,cgY,cgZ,strcom,

72

 & fstang,vehwid,x,y,z,vmass,xw,yw,ezero,
 & eone,etwo,ethree,TDelta,oldtim,ydLoc,
 & drvtrq,rfwang,rfww,rrww,x_veh,y_veh,z_veh,
 & x0,y0,z0,xprev
C
 INTEGER IVAL1, IVAL2, IVAL3, numwhl,numrb,numsen,pubrat,i
C
 logical first,flag
C
C---Functions and subroutines---
C none
C
C---DATA statements---
C
 data vmass,first,oldtim,flag / 0.0,.true.,0.0,.true. /
C
C===

C============Process Block==
 T = TIME
 OUTNOD = 0.0
 INOD1 = ENS(IC(IBLOCK, 1))
 INOD2 = ENS(IC(IBLOCK, 2))
 INOD3 = ENS(IC(IBLOCK, 3))
 INOD4 = ENS(IC(IBLOCK, 4))
 INOD5 = ENS(IC(IBLOCK, 5))
 INOD6 = ENS(IC(IBLOCK, 6))
 INOD7 = ENS(IC(IBLOCK, 7))
 INOD8 = ENS(IC(IBLOCK, 8))
 IVAL1 = IC(IBLOCK, 10)
 IVAL2 = IC(IBLOCK, 11)
 IVAL3 = IC(IBLOCK, 12)
 VAL1 = RC(IBLOCK, 1)
 VAL2 = RC(IBLOCK, 2)
 VAL3 = RC(IBLOCK, 3)

 IF (IEVAL .EQ. 1) THEN

C***
C* The user should place the desired calculations below this comment. *
C* Note that the final output node calculation should be placed in *
C* OUTNOD. For instance, if the output node was to be the cubic root *
C* of the first input node, the calculation would be as follows: *
C* OUTNOD = INOD1**(1/3) *
C* Leave the rest of the code alone. *
C* *
C* It is possible that this element maybe digital. Digital means *
C* that the output is delayed by srate. If the element is digital *
C* then IC(IBLOCK,13) is one and the following code is executed. *
C* If the element is not digital then this code is ignored. Note *
C* the output node must be calculated before this block of code. *
C***
C
C
CC
CCCCCCC CCCC
CCCCCCC Grab model states (nodes) and prepare to pass them out CCCC

73

CCCCCCC CCCC
CC
C
CC
CCCCCCC
CCCCCCC DADS outputs units in the following format : CCCCCCC
CCCCCCC CCCCCCC
CCCCCCC Length - inch CCCCCCC
CCCCCCC Mass - (lb*sec**2)/inch CCCCCCC
CCCCCCC Force - lb (pound) CCCCCCC
CCCCCCC CCCCCCC
CCCCCCC The following vehicle state units will be changed CCCCCCC
CCCCCCC to represent CCCCCCC
CCCCCCC CCCCCCC
CCCCCCC Length in foot CCCCCCC
CCCCCCC Mass in (lb*sec**2)/foot CCCCCCC
CCCCCCC Force remains lb (pound) CCCCCCC
CCCCCCC CCCCCCC
CC
C
 if(first)then
 numwhl = indxar('a',3,31,0,42,ia)
 numrb = indxar('a',3,3,0,1,ia)
 crstfr(1) = a(indxar('a',3,31,1,8,ia))
 crstfr(2) = a(indxar('a',3,31,3,8,ia))
 crstfl(1) = a(indxar('a',3,31,2,8,ia))
 crstfl(2) = a(indxar('a',3,31,4,8,ia))
 mass5 = (a(indxar('a',3,3,1,1,ia)))*12.0
 x0 = (ens(getnod('CHASSIS_X_POS ')))/12.0
 y0 = (ens(getnod('CHASSIS_Y_POS ')))/12.0
 z0 = (ens(getnod('CHASSIS_Z_POS ')))/12.0
 xprev=x0
C Temporary hardcode for HMMWV Izz5 (slug*ft), mass (slugs), cgfs (ft)and
cgrs (ft)
C while node value is not setting.
C
C Izz5 = (a(indxar('a',3,3,1,4,ia)))/12.0
 Izz5 = 7500.0
C cgfs = (ens(getnod('VEHCG_FRSUSP_DIST ')))/12.0
 cgfs = 6.8
C cgrs = (ens(getnod('VEHCG_RRSUSP_DIST ')))/12.0
 cgrs = 4.0
C vehwid = (ens(getnod('VEHICLE_WIDTH ')))/12.0
 do 555 i=1,numrb
 vmass = vmass + (a(indxar('a',3,3,i,1,ia)))*12.0
 555 continue
 first = .false.
 endif
C
 x = (ens(getnod('CHASSIS_X_POS ')))/12.0
 y = (ens(getnod('CHASSIS_Y_POS ')))/12.0
 z = (ens(getnod('CHASSIS_Z_POS ')))/12.0
 x_veh=x
 y_veh=y
 z_veh=z
 xd = (ens(getnod('CHASSIS_X_VEL ')))/12.0
 yd = (ens(getnod('CHASSIS_Y_VEL ')))/12.0

74

 zd = (ens(getnod('CHASSIS_Z_VEL ')))/12.0
 xw = ens(getnod('CHASSIS_ROLL_RATE '))
 yw = ens(getnod('CHASSIS_PITCH_RATE '))
 zw = ens(getnod('CHASSIS_YAW_RATE '))
 roll = ens(getnod('CHASSIS_ROLL_ANG '))
 pitch = ens(getnod('CHASSIS_PITCH_ANG '))
 yaw = ens(getnod('CHASSIS_YAW_ANG '))
 zfr(1) = a(indxar('a',3,31,1,42,ia))
 zfr(2) = a(indxar('a',3,31,3,42,ia))
 zfl(1) = a(indxar('a',3,31,2,42,ia))
 zfl(2) = a(indxar('a',3,31,4,42,ia))
 fstang = ens(getnod('FR_STEER_ACT_SENSOR '))
 rfwang = ens(getnod('FR_WHEEL_WRT_CHASSIS'))
 ydLoc = (ens(getnod('CHASSIS_LOCAL_Y_VEL ')))/12.0
 rfww = ens(getnod('RF_WHEEL_RATE '))
 rrww = ens(getnod('RR_WHEEL_RATE '))
C
C
C
 if(t-oldtim.le.0.0)then
 TDelta = 0.001
 else
 TDelta = t-oldtim
 endif
C
C
 if(iblock.eq.1)then
 call VEH_STEER(t,crstfl,crstfr,zfl,zfr,vmass,cgfs,cgrs,Izz5,
 & vehwid,y,yd,zw,yw,xw,roll,pitch,yaw,x,
 & fstang,rfwang,xd,z,zd,TDelta,ydLoc,numwhl,
 & strcom)
 outnod = strcom
 elseif(iblock.eq.2)then
 call speed(rrww,drvtrq)
C outnod = drvtrq
 outnod = 0.0
 endif
C
 oldtim = t
C
C--Following code only executed if element is digital.

 IF(IC(IBLOCK,13) .EQ. 1)THEN
 SRATE = RC(IBLOCK,4)
 TLSMP = RC(IBLOCK,5)

 TSMP = TLSMP + SRATE
 SMPLOW = TSMP - TOL
 SMPHGH = TSMP + TOL

 IF(T .GE. SMPLOW .AND. T .LE. SMPHGH)THEN
 RC(IBLOCK,6) = OUTNOD
 ELSE
 OUTNOD = RC(IBLOCK,6)
 ENDIF
 ENDIF

75

C***

C***
C* This should be the end of the user code. The final output node *
C* calculation should have been placed in the variable OUTNOD. *
C***

 ENS(IC(IBLOCK,9)) = OUTNOD

 ELSE IF (IEVAL .EQ. 2) THEN

 WRITE (INFOF, 100)
 ERRCOD = 23512
 100 FORMAT(/,'USRALG elements not allowed in algebraic loop.',/)

 ENDIF

 RETURN
 END

**
**

C***
C
C *** Matrix Product Subroutine ***
C
C GMPRD: Computes matrix product
C
C-----------Author and Modification Section-----------------------------
C
C Author: IBM Scientific Subroutine
C
C Date written:
C
C Written on:
C
C Modifications: C. MacAdam
C
C---
C
C-----------Algorithm Description---------------------------------------
C
C Purpose and use: R = A B
C
C Error conditions:
C
C Machine dependencies: none
C
C Called by: DRIVER
C

76

C---
C
 SUBROUTINE GMPRD(A, B, R, N, M, L)
C
C-------------Variable Descriptions-------------------------------------
C
C---Arguments passed:
C
C A.....N x M matrix
C B.....M x L matrix
C R.....N x L resultant matrix = A B product
C N.....integer row dimension of A
C M.....integer column dimension of A (or row dimension of B)
C L.....integer column dimension of B
C
 double precision A(N*M),B(M*L),R(N*L)
C
C---COMMON blocks---
C
C None
C
C---COMMON Variables--
C
C None
C
C---Local variables---
C
C IR, IK, M, K, L, IR, JI, J, N, IB, IK, etc.....integer counters
C
C---Functions and subroutines---
C
C None
C
C---
C
C-------------Process Block---
C
C
 IR = 0
 IK = -M
 DO 10 K = 1, L
 IK = IK + M
 DO 10 J = 1, N
 IR = IR + 1
 JI = J - N
 IB = IK
 R(IR) = 0.
 DO 10 I = 1, M
 JI = JI + N
 IB = IB + 1
 10 R(IR) = R(IR) + A(JI) * B(IB)
 RETURN
 END

**
**

77

C***
C $Id: main.f,v 1.3.2.1.2.1 1997/12/23 15:55:12 bill Exp $

C MAIN: Entry point for DADS-3D - used to reset array sizes.

C============Author and Modification Section============================
C
C Author: Chuck Mead
C
C Date written: January 29, 1986
C
C Written on: MicroVAX II
C
C Modifications:
C 1) 1/28/88 Changed the /AIA/ common block from named common to
C blank common to avoid any potential problems resul-
C ting from different sizes of the same common block
C in different routines. (Chuck Mead)
C 2) 4/5/88 Increased A and IA to 700000 and 150000. (Dick Kading)
C $Log: main.f,v $
C Revision 1.3.2.1.2.1 1997/12/23 15:55:12 bill
C Added a comment for NSAVE13.
C
c Revision 1.3.2.1 1996/07/26 16:33:50 alan
c Replaced the explicit definition of the A and IA arrays with the common
block
c 'dadsaia.blk'. This common block is already being used by several routines
c (particularly in the MatLab and MatrixX interface routines), and Chuck says
c it's OK.
c
c Revision 1.3 1995/10/23 17:39:17 bill
c Define number of data points stored for continuous delay element here.
c This allows user to increase the size.
c
c Revision 1.2 1995/03/31 14:54:41 chuck
c The big 7.6 commit.
c
c Revision 1.1.1.1.10.1 1995/03/23 18:09:28 chuck
c Changed A and IA arrays from blank common to the named common blocks
c used with the DADS/Plant interfaces.
c
C Copyright (c) CADSI 1988-1995
C
C===

C============Algorithm Description======================================
C
C Purpose and use:
C This subroutine is the entry point for the DADS-3D analysis pro-
C gram. The sizes of the two main arrays, A and IA, are defined
C here. To change the size of either the integer array IA or the
C double precision array A, change the value of the associated
C parameter, i.e., PIASIZ for IA or PASIZ for A. Then, recompile
C this routine, replace it in the MOD3D object library, and relink

78

C DADS-3D.
C
C Error conditions: none
C
C Machine dependencies: none
C
C===

 SUBROUTINE MAINA

C============Variable Descriptions======================================
C
C---Arguments passed--
C none
C
C---COMMON blocks---
C

C
C DADSAIA: Common blocks for A and IA arrays
C
C---Main real & integer data arrays
C
C A........Vector for all real data in the system.
C IA.......Vector for all integer data in the system.
C PASIZ....Parameter defining the upper bound of the A array.
C PIASIZ...Parameter defining the upper bound of the IA array.
C PLASIZ...Parameter used to size A array for DADS/plant runs.
C PLIASIZ...Parameter used to size IA array for DADS/plant runs.
C
C Copyright (c) CADSI 1996
C===

 INTEGER PASIZ, PIASIZ
 INTEGER PLASIZ, PLIASIZ
 PARAMETER (PASIZ=4000000, PIASIZ=800000)

 INTEGER IA(0:PIASIZ)
 DOUBLE PRECISION A(0:PASIZ)

 COMMON /DADSIA/ IA
 COMMON /DADSA / A
 COMMON /PLDADSA / PLASIZ, PLIASIZ

 SAVE /DADSIA/, /DADSA/, /PLDADSA/
C
 INTEGER NSAVE13
 COMMON/C8CONDLY/NSAVE13
 SAVE/C8CONDLY/

C

79

C---Local variables---
C
C ASIZE....Local variable for upper bound array declaration for the
C array A.
C IASIZE...Local variable for upper bound array declaration for the
C array IA.
C NSAVE13..Maximum number of points saved in the control analaog delay
C element. The user may increase this if needed.
C
 INTEGER ASIZE, IASIZE
C
C---Functions and subroutines---
C
 EXTERNAL MAINB
C
C===

C============Process Block==

C---Set the value of the two array sizes equal to the declared
C parameters.

 ASIZE = PASIZ
 IASIZE = PIASIZ

C--Number of data points in continuos delay element.

 NSAVE13 = 5000

C---Continue the analysis.

 CALL MAINB (A, IA, ASIZE, IASIZE)

 RETURN
 END
C

 subroutine SPEED(ww,drvtrq)
C
 double precision gain,ww,spderr,drvtrq
C
 gain = 10000.0D0
 spderr = 60.0 - ww
C
 drvtrq = spderr*gain
C
 if(drvtrq.le.-20000.0)then
 drvtrq = -20000.0
 elseif(drvtrq.ge.40000.0)then
 drvtrq = 40000.0

80

 endif
C
 return
 end
C

C
C Subroutine TRANXY transforms polar RSTAR and THSTAR to inertial XSTAR
C and YSTAR
C
 SUBROUTINE TRANXY (X,Y,PSI,RSTAR,THSTAR,XSTAR,YSTAR)
C
C -------------------VARIABLE DESCRIPTIONS------------------------------
C
C -------------------ARGUEMENTS PASSED----------------------------------
C
C X - Vehicle's forward displacement, (ft)
C Y - Vehicle's lateral displacement, (ft)
C PSI - Vehicle's yaw angle, (rad)
C RSTAR - Average of the range array or previewed range
C THSTAR - Weighted average of the theat array or previewed angle
C XSTAR - Previewed forward location (ft)
C YSTAR - Previewed lateral location (ft)
C
C --
C
 DOUBLE PRECISION X,Y,PSI,RSTAR,THSTAR,XSTAR,YSTAR
C
 XSTAR=X+RSTAR*COS(PSI+THSTAR)
 YSTAR=Y+RSTAR*SIN(PSI+THSTAR)
C
C
 RETURN
 END
C

**
**
C
 subroutine VEH_STEER(t,crstfl,crstfr,zfl,zfr,vmass,cgfs,cgrs,
 & Izz5,vehwid,y,yd,zw,yw,xw,roll,pitch,
 & yaw,x,fstang,rfwang,xd,z,zd,TDelta,
 & ydLoc,numwhl,strcom)
C
 COMMON /DRVST1/ GRAV,TICYCL,TSS,DMAX,XP(100),YP(100),TAUMEM,
 1 TFF,RM,A,B,RI,PSIO,NTF,NP,TLAST,DFWLST,TILAST,
 2 DMEM(1000,2), XT(100), YT(100)
 COMMON /DRIV/ CAF, CAR, WHBS, WF, WR, U
C
 SAVE/DRIVST1/
 SAVE/DRIV/
C
 double precision t,TDelta,strcom,newang,DFW,oldang,stgain,
 & fstang,xd,xdglim,crstfl(2),crstfr(2),zfl(2),
 & zfr(2),vmass,cgfs,cgrs,Izz5,y,yd,zw,yaw,x,

81

 & vehwgt,vehwid,strlim,pi,z,roll,pitch,yw,xw,
 & ydLoc,caf,car,grav,ticycl,tss,dmax,xp,yp,
 & taumem,tff,rm,a,b,ri,psio,tlast,dfwlst,tilast,
 & dmem,xt,yt,whbs,wf,wr,u,zd,rfwang
 integer numwhl,numaxl,ntf,np
C
 data stgain,xdglim,DFW,strlim,pi /50000.0,20.0,0.0,34.0,3.14159/
C
C
CCC
C C
C Strcom (steer command) is a torque in inch*lbs, stgain (steer gain) C
C is in inch*lbs/radian, xd (x direction velocity) is in C
C inches/sec, xdglim (x direction velocity gain limit) is in C
C inches/sec, newang (updated average steer angle) is in radians, C
C and oldang (previous average steer angle) is in radians. C
CCC
C
 oldang = fstang
 vehwgt = vmass*32.2
 numaxl = numwhl/2
 caf = crstfl(1)+crstfr(1)
 car = crstfl(2)+crstfr(2)
 rm = vmass
 ri = Izz5
 a = cgfs
 b = cgrs
C
 if(xd.ge.3.0)then
 call Interface_Steering (t,TDelta,ydLoc,x,y,z,yaw,pitch,
 & roll,xd,yd,zd,zw,yw,xw,numaxl,
 & zfr,zfl,DFW)
 endif
C
C
 newang = DFW
C
C
 strcom = -1.0*(stgain*(newang - rfwang))
C
 return
 end

************************** END OF FORTRAN CODE ****************************

82

INTENTIONALLY LEFT BLANK.

83

NO. OF
COPIES ORGANIZATION

 * ADMINISTRATOR
 DEFENSE TECHNICAL INFO CTR
 ATTN DTIC OCA
 8725 JOHN J KINGMAN RD STE 0944
 FT BELVOIR VA 22060-6218
 *pdf file only

 1 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL CI IS R REC MGMT
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL CI OK TECH LIB
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL D D SMITH
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL SE RM E BURKE
 G GOLDMAN
 AMSRD ARL SE DC A GOLDBERG
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DOD JOINT CHIEFS OF STAFF
 ATTN J39 CAPABILITIES DIV
 CPT J M BROWNELL
 THE PENTAGON RM 2C865
 WASHINGTON DC 20301

 1 DIRECTOR CIA
 ATTN D MOORE
 WASHINGTON DC 20505-0001

 3 PM ABRAMS TANK SYSTEM
 ATTN SFAE GCS AB COL KOTCHMAN
 P LEITHEISER H PETERSON
 WARREN MI 48397-5000

 1 PM M1A2
 ATTN SFAE GCS AB LTC R LOVETT
 WARREN MI 48397-5000

NO. OF
COPIES ORGANIZATION

 1 PM M1A1
 ATTN SFAE GCS AB LTC L C MILLER JR
 WARREN MI 48397-5000

 1 PEO-GCS
 BRADLEY FIGHTING VEHICLES
 ATTN M KING
 WARREN MI 48397-5000

 1 PM BFVS
 ATTN ATZB BV COL C BETEK
 FORT BENNING GA 31905

 1 PM M2/M3 BFVS
 ATTN SFAE GCS BV LTC J MCGUINESS
 WARREN MI 48397-5000

 3 PM BCT
 ATTN SFAE GCS BCT COL R D OGG JR
 J GERLACH T DEAN
 WARREN MI 48397-5000

 1 PM IAV
 ATTN SFAE GCS BCT LTC J PARKER
 WARREN MI 48397-5000

 1 PM NIGHT VISION/RSTA
 ATTN SFAE IEW&S NV COL BOWMAN
 10221 BURBECK RD
 FT BELVOIR VA 22060-5806

 1 NIGHT VISION & ELEC SENSORS DIR
 ATTN DR A F MILTON
 10221 BURBECK RD SUITE 430
 FT BELVOIR VA 22060-5806

 2 CDR US ARMY TRADOC
 ATTN ATINZA R REUSS
 ATIN I C GREEN
 BLDG 133
 FT MONROE VA 23651

 1 OFC OF THE SECY OF DEFENSE
 CTR FOR COUNTERMEASURES
 ATTN M A SCHUCK
 WSMR NM 88002-5519

 1 US SOCOM
 ATTN SOIO JA F J GOODE
 7701 TAMPA POINT BLVD BLDG 501
 MCDILL AFB FL 33621-5323

84

NO. OF
COPIES ORGANIZATION

 1 CDR US ARMY ARMOR CTR & FT KNOX
 TSM/ABRAMS
 ATTN COL D SZYDLOSKI
 FT KNOX KY 40121

 1 CDR US AMBL
 ATTN COL J JUGHES
 FT KNOX KY 40121

 1 DIR OF COMBAT DEVELOPMENT
 ATTN ATZK FD W MEINSHAUSEN
 BLDG 1002 ROOM 326
 1ST CAVALRY DIV RD
 FT KNOX KY 40121-9142

 1 COMMANDING OFFICER
 MARINE CORPS INTEL ACTIVITY
 ATTN COL WILLIAM BARTH
 3300 RUSSELL ROAD SUITE 250
 QUANTICO VA 22134-5011

 4 CDR US TACOM-ARDEC
 ATTN AMSTA AR TD M DEVINE
 M FISETTE
 AMSTA AR FSA M J FENECK
 AMSTA AR FSA P D PASCUA
 PICATINNY ARSENAL NJ 07806-5000

 4 CDR US TACOM-ARDEC
 ATTN AMSTA AR FSA S R KOPMANN
 H KERWIEN K JONES
 A FRANCHINO
 PICATINNY ARSENAL NJ 07806-5000

 4 CDR US TACOM-ARDEC
 ATTN AMSTA AR FSA T A LAGASCA
 AMSTA AR FSP D LADD
 M CILLI M BORTAK
 PICATINNY ARSENAL NJ 07806-5000

 3 CDR US TACOM-ARDEC
 ATTN AMSTA AR FSP G A PEZZANO
 R SHORR
 AMSTA AR FSP I R COLLETT
 PICATINNY ARSENAL NJ 07806-5000

 7 CDR US TACOM-ARDEC
 ATTN AMSTA AR CCH A M PALTHINGAL
 A VELLA E LOGSDON
 R CARR M MICOLICH
 M YOUNG A MOLINA
 PICATINNY ARSENAL NJ 07806-5000

NO. OF
COPIES ORGANIZATION

 3 CDR US TACOM-ARDEC
 ATTN AMSTA AR QAC R SCHUBERT
 AMSTA AR WE C R FONG S TANG
 PICATINNY ARSENAL NJ 07806-5000

 1 SAIC
 ATTN K A JAMISON
 PO BOX 4216
 FT WALTON BEACH FL 32549

 4 PEO-GCS
 ATTN SFAE GCS C GAGNON
 SFAE GCS W A PUZZUOLI
 SFAE GCS BV J PHILLIPS
 SFAE GCS LAV COL T LYTLE
 WARREN MI 48397-5000

 4 PEO-GCS
 ATTN SFAE GCS AB SW DR PATTISON
 SFAE GCS AB LF LTC PAULSON
 SFAE GCS LAV M T KLER
 SFAE GCS LAV FCS MR ASOKLIS
 WARREN MI 48397-5000

 3 CDR US ARMY TACOM
 ATTN AMSTA TR DR R MCCLELLAND
 MR BAGWELL
 AMSTA TA J CHAPIN
 WARREN MI 48397-5000

 12 CDR US ARMY TACOM
 ATTN AMSTA TR R DR J PARKS C ACIR
 S SCHEHR D THOMAS J SOLTESZ
 S CAITO K LIM J REVELLO
 B BEAUDOIN B RATHGEB
 M CHAIT S BARSHAW
 WARREN MI 48397-5000

 8 CDR US ARMY TACOM
 ATTN AMSTA CM XSF R DRITLEIN
 MR HENDERSON MR HUTCHINSON
 MR SCHWARZ S PATHAK
 R HALLE J ARKAS G SIMON
 WARREN MI 48397-5000

 5 PEO PM MORTAR SYSTEMS
 ATTN SFAE AMO CAS IFM L BICKLEY
 M SERBAN K SLIVOVSKY
 SFAE GCS TMA R KOWALSKI
 SFAE GCS TMA PA E KOPACZ
 PICATINNY ARSENAL NJ 07860-5000

85

NO. OF
COPIES ORGANIZATION

 3 MIT LINCOLN LABORATORY
 ATTN J HERD G TITI D ENGREN
 244 WOOD STREET
 LEXINGTON MA 02420-9108

 2 THE UNIV OF TEXAS AT AUSTIN
 INST FOR ADVANCED TECH
 ATTN I MCNAB S BLESS
 PO BOX 20797
 AUSTIN TX 78720-2797

 1 INNOVATIVE SURVIVABILITY TECH
 ATTN J STEEN
 PO BOX 1989
 GOLETA CA 93116

 1 SUNY BUFFALO
 ELECTRICAL ENGINEERING DEPT
 ATTN J SARJEANT
 PO BOX 601900
 BUFFALO NY 14260-1900

 1 GENERAL DYNAMICS LAND SYSTEMS
 ATTN D GERSDORFF
 PO BOX 2074
 WARREN MI 49090-2074

 1 CDR US ARMY CECOM
 ATTN W DEVILBISS
 BLDG 600
 FT MONMOUTH NJ 07703-5206

 1 MARCORSYSCOM/CBG
 ATTN CPT J DOUGLAS
 QUANTICO VA 22134-5010

 2 CDR USAIC
 ATTN ATZB CDF MAJ J LANE
 D HANCOCK
 FT BENNING GA 31905

 2 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL SL EA R CUNDIFF
 AMSRD ARL SL EM J THOMPSON
 WSMR NM 88001-5513

 4 UNITED DEFENSE ADV DEV CTR
 ATTN K GROVES J FAUL T WINANT
 V HORVATICH
 328 BROKAW ROAD
 SANTA CLARA CA 95050

NO. OF
COPIES ORGANIZATION

 2 NORTHROP GRUMMAN CORP
 ATTN A SHREKENHAMER D EWART
 1100 W HOLLYVALE STREET
 AAUSA CA 91702

 1 CDR US ARMY AMCOM
 ATTN AMSAM RD ST WF D LOVELACE
 REDSTONE ARSENAL AL 35898-5247

 1 OFC OF THE SECY OF DEFENSE
 ATTN ODDRE (R&T) G SINGLEY
 THE PENTAGON
 WASHINGTON DC 20301-3080

 1 US MILITARY ACADEMY
 MATH SCIENCES CTR OF EXCELLENCE
 DEPT OF MATHEMATICAL SCIENCES
 ATTN MDN A MAJ HUBER
 THAYER HALL
 WEST POINT NY 10996-1786

 1 DIR US ARMY WATERWAYS EXPER STN
 ATTN R AHLVIN
 3909 HALLS FERRY ROAD
 VICKSBURG MS 39180-6199

 1 NATL INST STAN AND TECH
 ATTN K MURPHY
 100 BUREAU DRIVE
 GAITHERSBURG MD 20899

 1 CDR US ARMY MMBL
 ATTN MAJ J BURNS
 BLDG 2021
 BLACKHORSE REGIMENT DRIVE
 FT KNOX KY 40121

 2 DIRECTOR
 NASA JET PROPULSION LAB
 ATTN L MATHIES K OWENS
 4800 OAK GROVE DRIVE
 PASADENA CA 91109

 1 DIRECTOR
 AMCOM MRDEC
 ATTN AMSMI RD W C MCCORKLE
 REDSTONE ARSENAL AL 35898-5240

 1 COMMANDER
 CECOM
 SP & TERRESTRIAL COM DIV
 ATTN AMSEL RD ST MC M H SOICHER
 FT MONMOUTH NJ 07703-5203

86

NO. OF
COPIES ORGANIZATION

 1 COMMANDER
 US ARMY INFO SYS ENGRG CMD
 ATTN ASQB OTD F JENIA
 FT HUACHUCA AZ 85613-5300

 1 COMMANDER
 US ARMY NATICK RDEC
 ACTING TECHNICAL DIR
 ATTN SSCNC T P BRANDLER
 NATICK MA 01760-5002

 1 COMMANDER
 ARMY RESEARCH OFC
 4300 S MIAMI BLVD
 RSCH TRIANGLE PARK NC 27709

 1 COMMANDER
 US ARMY STRICOM
 ATTN J STAHL
 12350 RSCH PARKWAY
 ORLANDO FL 32826-3726

 1 COMMANDER
 US ARMY TRADOC
 BATTLE LAB INTEGRATION 7 TECH DIR
 ATTN ATCD B J A KLEVECZ
 FT MONROE VA 23651-5850

 1 COMMANDER
 ATTN CODE B07 J PENNELLA
 17320 DAHLGREN ROAD
 BLDG 1470 RM 1101
 DAHLGREN VA 22448-5100

 1 DARPA
 3701 N FAIRFAX DRIVE
 ARLINGTON VA 22203-1714

 1 COMMANDER
 US ARMY AVIATION & MISSILE CMD
 ATTN AMSAM-RD-SS-EG A KISSELL
 BLDG 5400
 REDSTONE ARSENAL AL 35898

 1 OFC OF THE PROJECT MGR
 MANEUVER AMMUNITION SYSTEMS
 ATTN S BARRIERES
 BLDG 354
 PICATINNY ARSENAL NJ 07806-5000

 1 COMMANDER
 US ARMY TRADOC ANALYSIS CTR
 ATTN ATRC-WBA J GALLOWAY
 WSMR NM 88002-5502

NO. OF
COPIES ORGANIZATION

 1 FASTTRACK TECH INC
 ATTN J K GARRETT
 540 CEDAR DRIVE
 RADCLIFF KY 40160

 1 DIR USARMY TACOM
 6501 E ELEVEN MILE RD
 WARREN MI 48397-5000

 ABERDEEN PROVING GROUND

 2 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL CI OK (TECH LIB)
 BLDG 305 APG AA

 1 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL HR SC
 BLDG 459

 1 CDR US ARMY EDGEWOOD RDEC
 ATTN SCBRD TD J VERVIER
 APG EA

 2 CDR US ARMY TECOM
 ATTN AMSTE CD B SIMMONS
 AMSTE CD M R COZBY
 RYAN BLDG

 4 DIR US AMSAA
 ATTN AMXSY D M MCCARTHY
 P TOPPER
 AMXSY CA G DRAKE S FRANKLIN
 BLDG 367

 7 CDR US ATC
 ATTN CSTE AEC COL ELLIS
 CSTE AEC TD J FASIG
 CSTE AEC TE H CUNNINGHAM
 CSTE AEC RM C A MOORE
 CSTE AEC TE F P OXENBERG
 A SCRAMLIN
 CSTE AEC CCE W P CRISE
 BLDG 400

 1 PM ODS
 ATTN SFAE CBD COL B WELCH
 BLDG 4475
 APG EA

87

NO. OF
COPIES ORGANIZATION

 5 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL WM J SMITH
 E SCHMIDT B RINGER
 T ROSENBERGER
 B BURNS
 BLDG 4600

 3 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL WM
 C SHOEMAKER
 J BORNSTEIN
 AMSRD ARL WM BF J WALL
 BLDG 1121

 2 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL WM B A HORST
 W CIEPIELLA
 BLDG 4600

 3 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL WM BA D LYONS
 AMSRD ARL WM BC P PLOSTINS
 AMSRD ARL WM BD B FORCH
 BLDG 4600

 2 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL WM MB L BURTON
 BLDG 4600

 7 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL WM BF T HAUG
 P FAZIO R PEARSON
 M FIELDS G HAAS
 W OBERLE J WALD
 BLDG 390

 7 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL WM TE A NIILER
 G THOMSON T KOTTKE
 M MCNEIR P BERNING
 J POWELL C HUMMER
 BLDG 120

 1 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL WM TC R COATES
 BLDG 309

NO. OF
COPIES ORGANIZATION

 1 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL SL BG M ENDERLEIN
 BLDG 247

 1 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL SL EM C GARRETT
 BLDG 390A

88

